ECS 235B Module 20 Applying the Bell-LaPadula Model

Rule

- $\rho: R \times V \rightarrow D \times V$
- Takes a state and a request, returns a decision and a (possibly new) state
- Rule ρ ssc-preserving if for all $(r, v) \in R \times V$ and v satisfying ssc rel f, $\rho(r, v) = (d, v')$ means that v' satisfies ssc rel f'.
 - Similar definitions for *-property, ds-property
 - If rule meets all 3 conditions, it is *security-preserving*

Unambiguous Rule Selection

- Problem: multiple rules may apply to a request in a state
 - if two rules act on a read request in state v ...
- Solution: define relation $W(\omega)$ for a set of rules $\omega = \{ \rho_1, ..., \rho_m \}$ such that a state $(r, d, v, v') \in W(\omega)$ iff either
 - *d* = <u>i;</u> or
 - for exactly one integer j, $\rho_j(r, v) = (d, v')$
- Either request is illegal, or only one rule applies

Rules Preserving SSC

- Let ω be set of *ssc*-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies simple security condition Proof: by contradiction.
 - Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition
 - As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq \underline{i}$.
 - As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.

Adding States Preserving SSC

Let v = (b, m, f, h) satisfy simple security condition. Let (s, o, p) ∉ b, b' = b ∪ { (s, o, p) }, and v' = (b', m, f, h). Then v'satisfies simple security condition iff:

1.Either $p = \underline{e}$ or $p = \underline{a}$; or

2. Either $p = \underline{r}$ or $p = \underline{w}$, and $f_c(s) \operatorname{dom} f_o(o)$

Proof:

- 1. Immediate from definition of simple security condition and v' satisfying ssc rel f
- 2. v' satisfies simple security condition means $f_s(s)$ dom $f_o(o)$, and for converse, $(s, o, p) \in b'$ satisfies ssc rel f, so v' satisfies simple security condition

Rules, States Preserving *-Property

- Let ω be set of *-property-preserving rules, state z_0 satisfies the *property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property
- Let v = (b, m, f, h) satisfy *-property. Let (s, o, p) ∉ b, b' = b ∪ { (s, o, p) }, and v' = (b', m, f, h). Then v' satisfies *-property iff one of the following holds:
 - 1. $p = \underline{a}$ and $f_o(o) dom f_c(s)$
 - 2. $p = \underline{w}$ and $f_c(s) = f_o(o)$
 - 3. $p = \underline{r}$ and $f_c(s) dom f_o(o)$

Rules, States Preserving ds-Property

- Let ω be set of ds-property-preserving rules, state z_0 satisfies dsproperty. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property
- Let v = (b, m, f, h) satisfy ds-property. Let $(s, o, p) \notin b, b' = b \cup \{(s, o, p)\}$, and v' = (b', m, f, h). Then v' satisfies ds-property iff $p \in m[s, o]$.

Combining

- Let ρ be a rule and ρ(r, v) = (d, v'), where v = (b, m, f, h) and v' = (b', m', f', h'). Then:
 - 1. If $b' \subseteq b$, f' = f, and v satisfies the simple security condition, then v' satisfies the simple security condition
 - 2. If $b' \subseteq b$, f' = f, and v satisfies the *-property, then v' satisfies the *-property
 - 3. If $b' \subseteq b$, $m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and v satisfies the ds-property, then v' satisfies the ds-property

1. Suppose v satisfies simple security property.

- a) $b' \subseteq b$ and $(s, o, \underline{r}) \in b'$ implies $(s, o, \underline{r}) \in b$
- b) $b' \subseteq b$ and $(s, o, \underline{w}) \in b'$ implies $(s, o, \underline{w}) \in b$
- c) So $f_s(s)$ dom $f_o(o)$
- d) But f' = f
- e) Hence $f'_{s}(s) dom f'_{o}(o)$
- f) So v'satisfies simple security condition
- 2, 3 proved similarly

Example Instantiation: Multics

- 11 rules affect rights:
 - set to request, release access
 - set to give, remove access to different subject
 - set to create, reclassify objects
 - set to remove objects
 - set to change subject security level
- Set of "trusted" subjects $S_T \subseteq S$
 - *-property not enforced; subjects trusted not to violate it
- $\Delta(\rho)$ domain
 - determines if components of request are valid

get-read Rule

- Request *r* = (*get*, *s*, *o*, <u>r</u>)
 - s gets (requests) the right to read o
- Rule is $\rho_1(r, v)$: if $(r \neq \Delta(\rho_1))$ then $\rho_1(r, v) = (\underline{i}, v)$; else if $(f_s(s) \ dom \ f_o(o)$ and $[s \in S_T \ or \ f_c(s) \ dom \ f_o(o)]$ and $r \in m[s, o]$) then $\rho_1(r, v) = (y, (b \cup \{ (s, o, \underline{r}) \}, m, f, h))$; else $\rho_1(r, v) = (\underline{n}, v)$;

Security of Rule

• The get-read rule preserves the simple security condition, the *property, and the ds-property

Proof:

• Let v satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If v' = v, result is trivial. So let $v' = (b \cup \{(s_2, o, \underline{r})\}, m, f, h)$.

- Consider the simple security condition.
 - From the choice of v', either $b' b = \emptyset$ or { (s_2, o, \underline{r}) }
 - If b' b = Ø, then { (s₂, o, <u>r</u>) } ∈ b, so v = v', proving that v' satisfies the simple security condition.
 - If b' b = { (s₂, o, <u>r</u>) }, because the get-read rule requires that f_s(s) dom f_o(o), an earlier result says that v' satisfies the simple security condition.

- Consider the *-property.
 - Either $s_2 \in S_T$ or $f_c(s)$ dom $f_o(o)$ from the definition of get-read
 - If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T .
 - If $f_c(s)$ dom $f_o(o)$, an earlier result says that v' satisfies the simple security condition.

- Consider the discretionary security property.
 - Conditions in the *get-read* rule require <u>r</u> ∈ m[s, o] and either b' − b = Ø or { (s₂, o, <u>r</u>) }
 - If b' b = Ø, then { (s₂, o, <u>r</u>) } ∈ b, so v = v', proving that v' satisfies the simple security condition.
 - If b' b = { (s₂, o, <u>r</u>) }, then { (s₂, o, <u>r</u>) } ∉ b, an earlier result says that v' satisfies the ds-property.

give-read Rule

- Request $r = (s_1, give, s_2, o, \underline{r})$
 - s_1 gives (request to give) s_2 the (discretionary) right to read o
 - Rule: can be done if giver can alter parent of object
 - If object or parent is root of hierarchy, special authorization required
- Useful definitions
 - *root(o*): root object of hierarchy *h* containing *o*
 - parent(o): parent of o in h (so $o \in h(parent(o))$)
 - canallow(s, o, v): s specially authorized to grant access when object or parent of object is root of hierarchy
 - $m \land m[s, o] \leftarrow \underline{r}$: access control matrix m with \underline{r} added to m[s, o]

give-read Rule

```
• Rule is \rho_6(r, v):

if (r \neq \Delta(\rho_6)) then \rho_6(r, v) = (\underline{i}, v);

else if ([o \neq root(o) \text{ and } parent(o) \neq root(o) \text{ and } parent(o) \in b(s_1:\underline{w})] or

[parent(o) = root(o) \text{ and } canallow(s_1, o, v) ] or

[o = root(o) \text{ and } canallow(s_1, o, v) ])

then \rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow \underline{r}, f, h));

else \rho_1(r, v) = (n, v);
```

Security of Rule

- The *give-read* rule preserves the simple security condition, the *- property, and the ds-property
 - Proof: Let v satisfy all conditions. Let ρ₁(r, v) = (d, v'). If v' = v, result is trivial. So let v' = (b, m[s₂, o] ← r, f, h). So b' = b, f' = f, m[x, y] = m'[x, y] for all x ∈ S and y ∈ O such that x ≠ s and y ≠ o, and m[s, o] ⊆ m'[s, o]. Then by earlier result, v'satisfies the simple security condition, the *-property, and the dsproperty.