ECS 235B Module 20
Applying the Bell-LaPadula Model
Rule

• $\rho: R \times V \rightarrow D \times V$

• Takes a state and a request, returns a decision and a (possibly new) state

• Rule ρ \textit{ssc-preserving} if for all $(r, v) \in R \times V$ and v satisfying $ssc \ rel \ f$, $\rho(r, v) = (d, v')$ means that v' satisfies $ssc \ rel \ f'$.
 • Similar definitions for *-property, ds-property
 • If rule meets all 3 conditions, it is \textit{security-preserving}
Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state
 • if two rules act on a read request in state \(v \) ...
• Solution: define relation \(W(\omega) \) for a set of rules \(\omega = \{ \rho_1, ..., \rho_m \} \) such that a state \((r, d, v, v') \in W(\omega) \) iff either
 • \(d = i \); or
 • for exactly one integer \(j \), \(\rho_j(r, v) = (d, v') \)
• Either request is illegal, or only one rule applies
Rules Preserving SSC

• Let ω be set of ssc-preserving rules. Let state z_0 satisfy simple security condition. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies simple security condition

Proof: by contradiction.

• Choose $(x, y, z) \in \Sigma(R, D, W(\omega), z_0)$ as state not satisfying simple security condition; then choose $t \in N$ such that (x_t, y_t, z_t) is first appearance not meeting simple security condition

• As $(x_t, y_t, z_t, z_{t-1}) \in W(\omega)$, there is unique rule $\rho \in \omega$ such that $\rho(x_t, z_{t-1}) = (y_t, z_t)$ and $y_t \neq i$.

• As ρ ssc-preserving, and z_{t-1} satisfies simple security condition, then z_t meets simple security condition, contradiction.
Adding States Preserving SSC

Let \(v = (b, m, f, h) \) satisfy simple security condition. Let \((s, o, p) \not\in b, b' = b \cup \{ (s, o, p) \}\), and \(v' = (b', m, f, h) \). Then \(v' \) satisfies simple security condition iff:

1. Either \(p = e \) or \(p = a \); or
2. Either \(p = r \) or \(p = w \), and \(f_c(s) \) dom \(f_o(o) \)

Proof:

1. Immediate from definition of simple security condition and \(v' \) satisfying ssc rel \(f \)
2. \(v' \) satisfies simple security condition means \(f_c(s) \) dom \(f_o(o) \), and for converse, \((s, o, p) \in b' \) satisfies ssc rel \(f \), so \(v' \) satisfies simple security condition
Rules, States Preserving *-Property

• Let ω be set of *-property-preserving rules, state z_0 satisfies the *-property. Then $Σ(R, D, W(ω), z_0)$ satisfies *-property.

• Let $v = (b, m, f, h)$ satisfy *-property. Let $(s, o, p) ∉ b$, $b' = b ∪ \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies *-property iff one of the following holds:

 1. $p = a$ and $f_o(o) \text{ dom } f_c(s)$
 2. $p = w$ and $f_c(s) = f_o(o)$
 3. $p = r$ and $f_c(s) \text{ dom } f_o(o)$
Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property.

• Let $v = (b, m, f, h)$ satisfy ds-property. Let $(s, o, p) \not\in b$, $b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies ds-property iff $p \in m[s, o]$.
Combining

• Let \(\rho \) be a rule and \(\rho(r, \nu) = (d, \nu') \), where \(\nu = (b, m, f, h) \) and \(\nu' = (b', m', f', h') \). Then:
 1. If \(b' \subseteq b, f' = f \), and \(\nu \) satisfies the simple security condition, then \(\nu' \) satisfies the simple security condition
 2. If \(b' \subseteq b, f' = f \), and \(\nu \) satisfies the *-property, then \(\nu' \) satisfies the *-property
 3. If \(b' \subseteq b, m[s, o] \subseteq m'[s, o] \) for all \(s \in S \) and \(o \in O \), and \(\nu \) satisfies the ds-property, then \(\nu' \) satisfies the ds-property
Proof

1. Suppose v satisfies simple security property.
 a) $b' \subseteq b$ and $(s, o, r) \in b'$ implies $(s, o, r) \in b$
 b) $b' \subseteq b$ and $(s, o, w) \in b'$ implies $(s, o, w) \in b$
 c) So $f_c(s) \in dom f_o(o)$
 d) But $f' = f$
 e) Hence $f'_c(s) \in dom f'_o(o)$
 f) So v' satisfies simple security condition

2, 3 proved similarly
Example Instantiation: Multics

• 11 rules affect rights:
 • set to request, release access
 • set to give, remove access to different subject
 • set to create, reclassify objects
 • set to remove objects
 • set to change subject security level

• Set of "trusted" subjects $S_T \subseteq S$
 • *-property not enforced; subjects trusted not to violate it

• $\Delta(\rho)$ domain
 • determines if components of request are valid
get-read Rule

- **Request** $r = (\text{get}, s, o, r)$
 - s gets (requests) the right to read o
- **Rule is** $\rho_1(r, v)$:
 $\text{if } (r \neq \Delta(\rho_1)) \text{ then } \rho_1(r, v) = (\text{i}, v)$;
 \text{else if } (f_s(s) \text{ dom } f_o(o) \text{ and } [s \in S_T \text{ or } f_c(s) \text{ dom } f_o(o)] \text{ and } r \in m[s, o])
 \text{ then } \rho_1(r, v) = (y, (b \cup \{ (s, o, r) \}, m, f, h))$;
 \text{else } \rho_1(r, v) = (\text{n}, v)$;
Security of Rule

• The get-read rule preserves the simple security condition, the *-property, and the ds-property

Proof:
• Let \(v \) satisfy all conditions. Let \(\rho_1(r, v) = (d, v') \). If \(v' = v \), result is trivial. So let
\[v' = (b \cup \{(s_2, o, r)\}, m, f, h). \]
Proof

• Consider the simple security condition.
 • From the choice of v', either $b' - b = \emptyset$ or $\{(s_2, o, r)\}$
 • If $b' - b = \emptyset$, then $\{(s_2, o, r)\} \in b$, so $v = v'$, proving that v' satisfies the simple security condition.
 • If $b' - b = \{(s_2, o, r)\}$, because the get-read rule requires that $f_c(s) \text{ dom } f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the \(*\)-property.
 • Either \(s_2 \in S_T\) or \(f_c(s) \, \text{dom} \, f_o(o)\) from the definition of get-read
 • If \(s_2 \in S_T\), then \(s_2\) is trusted, so \(*\)-property holds by definition of trusted and \(S_T\).
 • If \(f_c(s) \, \text{dom} \, f_o(o)\), an earlier result says that \(v'\) satisfies the simple security condition.
Proof

• Consider the discretionary security property.
 • Conditions in the get-read rule require \(r \in m[s, o] \) and either \(b' - b = \emptyset \) or \{ (s_2, o, r) \}
 • If \(b' - b = \emptyset \), then \{ (s_2, o, r) \} \in b \), so \(v = v' \), proving that \(v' \) satisfies the simple security condition.
 • If \(b' - b = \{ (s_2, o, r) \} \), then \{ (s_2, o, r) \} \notin b \), an earlier result says that \(v' \) satisfies the ds-property.
give-read Rule

• Request $r = (s_1, \text{give}, s_2, o, r)$
 • s_1 gives (request to give) s_2 the (discretionary) right to read o
 • Rule: can be done if giver can alter parent of object
 • If object or parent is root of hierarchy, special authorization required

• Useful definitions
 • $\text{root}(o)$: root object of hierarchy h containing o
 • $\text{parent}(o)$: parent of o in h (so $o \in h(\text{parent}(o)))$
 • $\text{canallow}(s, o, v)$: s specially authorized to grant access when object or parent of object is root of hierarchy
 • $m \land m[s, o] \leftarrow r$: access control matrix m with r added to $m[s, o]$
give-read Rule

- Rule is $\rho_6(r, v)$:

  ```
  if ($r \neq \Delta(\rho_6)$) then $\rho_6(r, v) = (i, v);
  
  else if ($\neg$ root(o) and parent(o) \neq root(o) and parent(o) $\in b(s_1:w)$) or
  
  [parent(o) = root(o) and canallow(s_1, o, v) ] or
  
  [o = root(o) and canallow(s_1, o, v) ]
  
  then $\rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow \tau, f, h))$;
  
  else $\rho_1(r, v) = (n, v)$;
  ```
Security of Rule

• The *give-read* rule preserves the simple security condition, the *-property, and the ds-property

 • Proof: Let \(v \) satisfy all conditions. Let \(\rho_1(r, v) = (d, v') \). If \(v' = v \), result is trivial. So let \(v' = (b, m[s_2, o] \leftarrow r, f, h) \). So \(b' = b, f' = f, m[x, y] = m'[x, y] \) for all \(x \in S \) and \(y \in O \) such that \(x \neq s \) and \(y \neq o \), and \(m[s, o] \subseteq m'[s, o] \). Then by earlier result, \(v' \) satisfies the simple security condition, the *-property, and the ds-property.