ECS 235B Module 22
The Controversy and System Z
Controversy

• McLean:
 • “value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold.”
 • Basis: given assumptions known to be non-secure, BST can prove a non-secure system to be secure
†-Property

- State \((b, m, f, h)\) satisfies the †-property iff for each \(s \in S\) the following hold:
 1. \(b(s: a) \neq \emptyset \Rightarrow [\forall o \in b(s: a) \ [f_c(s) \text{ dom } f_o(o)]]\)
 2. \(b(s: w) \neq \emptyset \Rightarrow [\forall o \in b(s: w) \ [f_o(o) = f_c(s)]]\)
 3. \(b(s: r) \neq \emptyset \Rightarrow [\forall o \in b(s: r) \ [f_c(s) \text{ dom } f_o(o)]]\)

- Idea: for writing, subject dominates object; for reading, subject also dominates object

- Differs from *-property in that the mandatory condition for writing is reversed
 - For *-property, it’s object dominates subject
Analogues

The following two theorems can be proved

• $\Sigma(R, D, W, z_0)$ satisfies the \dagger-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action $(r, d, (b, m, f, h), (b', m', f', h'))$, W satisfies the following for every $s \in S'$
 • Every $(s, o, p) \in b - b'$ satisfies the \dagger-property relative to S'
 • Every $(s, o, p) \in b'$ that does not satisfy the \dagger-property relative to S' is not in b

• $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the simple security condition, the \dagger-property, and the ds-property.
Problem

• This system is *clearly* non-secure!
 • Information flows from higher to lower because of the \dagger-property
Discussion

- Role of Basic Security Theorem is to demonstrate that rules preserve security
- Key question: what is security?
 - Bell-LaPadula defines it in terms of 3 properties (simple security condition, *-property, discretionary security property)
 - Theorems are assertions about these properties
 - Rules describe changes to a *particular* system instantiating the model
 - Showing system is secure requires proving rules preserve these 3 properties
Rules and Model

- Nature of rules is irrelevant to model
- Model treats “security” as axiomatic
- Policy defines “security”
 - This instantiates the model
 - Policy reflects the requirements of the systems
- McLean’s definition differs from Bell-LaPadula
 - ... and is not suitable for a confidentiality policy
- Analysts cannot prove “security” definition is appropriate through the model
System Z

• System supporting weak tranquility

• On any request, system downgrades all subjects and objects to lowest level and adds the requested access permission
 • Let initial state satisfy all 3 properties
 • Successive states also satisfy all 3 properties

• Clearly not secure
 • On first request, everyone can read everything
Reformulation of Secure Action

• Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure.

• BST holds with these modified versions of the 3 properties.
Reconsider System Z

• Initial state:
 • subject s, object o
 • $C = \{\text{High, Low}\}$, $K = \{\text{All}\}$

• Take:
 • $f_c(s) = (\text{Low, All})$, $f_o(o) = (\text{High, All})$
 • $m[s, o] = \{\text{w}\}$, and $b = \{(s, o, \text{w})\}$.

• s requests r access to o

• Now:
 • $f'_o(o) = (\text{Low, All})$
 • $(s, o, r) \in b'$, $m'[s, o] = \{r, \text{w}\}$
Non-Secure System Z

• As $(s, o, r) \in b' - b$ and $f_o(o) \text{ dom } f_c(s)$, access added that was illegal in previous state
 • Under the new version of the Basic Security Theorem, System Z is not secure
 • Under the old version of the Basic Security Theorem, as $f'_c(s) = f'_o(o)$, System Z is secure
Response: What Is Modeling?

- Two types of models
 1. Abstract physical phenomenon to fundamental properties
 2. Begin with axioms and construct a structure to examine the effects of those axioms

- Bell-LaPadula Model developed as a model in the first sense
 - McLean assumes it was developed as a model in the second sense
Reconciling System Z

• Different definitions of security create different results
 • Under one (original definition in Bell-LaPadula Model), System Z is secure
 • Under other (McLean’s definition), System Z is not secure
Quiz

Consider a system with the simple security property, the †-property, and the ds-property. Under which of the following policies is it secure?

1. Information cannot flow from higher levels to lower levels
2. Information cannot flow from lower levels to higher levels
3. Information may flow from higher levels to lower levels, and vice versa