ECS 235B Module 31
State-Based Availability Models
State-Based Model (Millen)

• Unlike constraint-based model, allows a maximum waiting time to be specified
• Based on resource allocation system, denial of service base that enforces its policies
Resource Allocation System Model

• R set of resource types

• For each $r \in R$, number of resource units (capacity, $c(r)$) is constant; a process can hold a unit for a maximum holding time $m(r)$

• P set of processes

• For each $p \in P$, state is *running* or *sleeping*
 • When allocated a resource, process is running
 • Multiple process can be in running state simultaneously
 • Each p has upper bound it can be in running state before being interrupted, if only by CPU quantum q
 • Example: if CPU considered a resource, $m($CPU$) = q$
Allocation Matrix

• Rows represent processes; columns represent resources
 • \(A: P \times R \rightarrow \mathbb{N} \) is matrix
 • For \(p \in P, r \in R, A_p(r) \) is number of resource units of type \(r \) acquired by \(p \)
 • As at most \(c(r) \) of resource type \(r \) exist, at most that many can be allocated at any time

R1: The system cannot allocate more instances of a resource type than it has:

\[
(\forall r \in R)[\sum_{p \in P} A_p(r) \leq c(r)]
\]
More About Resources

• $T: P \rightarrow \mathbb{N}$ is system time when resource assignment was last changed
 • Think of it as a time vector, each element belonging to one process

• $Q^S: P \times R \rightarrow \mathbb{N}$ is matrix of required resources for each process, \textit{not including the resources it already holds}
 • So $Q^S_p(r)$ means the number of units of resource type r that process p may need to complete

• $Q^T: P \times R \rightarrow \mathbb{N}$ is matrix of how much longer each process p needs the units of resource r

• Predicates $\text{running}(p)$ true if p is in running state; $\text{asleep}(p)$ true otherwise

R2: A currently running process must not require additional resources to run

\begin{equation*}
\text{running}(p) \Rightarrow (\forall r \in R)[Q^S_p(r) = 0]
\end{equation*}
States, State Transitions

• Current state of system is \((A, T, Q^S, Q^T)\)
• State transition \((A, T, Q^S, Q^T) \rightarrow (A', T', Q'^S, Q'^T)\)
 • We only care about transitions due to allocation, deallocation of resources
• Three relevant types of transitions
 • Deactivation transition: \(\text{running}(p) \rightarrow \text{asleep}'(p)\); process stops execution
 • Activation transition: \(\text{asleep}(p) \rightarrow \text{running}'(p)\); process starts or resumes execution
 • Reallocation transition: transition in which \(p\) has resource allocation changed; can only occur when \(\text{asleep}(p)\)
Constraints

R3: Resource allocation does not affect allocations of a running process:

\[(running(p) \land running'(p)) \Rightarrow (A_p' = A_p)\]

R4: \(T(p)\) changes only when resource allocation of \(p\) changes:

\[(A_p'(CPU) = A_p(CPU)) \Rightarrow (T'(p) = T(p))\]

R5: Updates in time vector increase value of element being updated:

\[(A_p'(CPU) \neq A_p(CPU)) \Rightarrow (T'(p) > T(p))\]
Constraints

R6: When \(p \) reallocated resources, allocation matrix updated before \(p \) resumes execution:

\[
\text{asleep}(p) \Rightarrow Q^S_p' = Q^S_p + A_p - A_p'
\]

R7: When a process is not running, the time it needs resources does not change:

\[
\text{asleep}(p) \Rightarrow Q^T_p' = Q^T_p
\]

R8: When a process ceases to execute, the only resource it must surrender is the CPU:

\[
\begin{align*}
(running(p) \land asleep'(p)) & \Rightarrow A_p'(r) = A_p(r) - 1 \quad \text{if } r = \text{CPU} \\
(running(p) \land asleep'(p)) & \Rightarrow A_p'(r) = A_p(r) \quad \text{otherwise}
\end{align*}
\]
Resource Allocation System

• A system in a state \((A, T, Q^S, Q^T)\) such that:
 • State satisfies constraints R1, R2
 • All state transitions constrained to meet R3-R8
Denial of Service Protection Base (DPB)

• A mechanism that is tamperproof, cannot be prevented from operating, and guarantees authorized access to resources it controls

• Four parts:
 • Resource allocation system (see earlier)
 • Resource monitor
 • Waiting time policy
 • User agreement (see earlier); constraints apply to changes in allocation when process transitions from \textit{running}(p) to \textit{asleep}(p)
Resource Monitor

• Controls allocation, deallocation of resources and the timing

• Q^S_p is feasible if $\forall i[Q^S_p(r_i) + A_p(r_i) \leq c(r_i)] \land Q^S_p(CPU) \leq 1$
 • If the total number of resources it will be allocated will always be no more than the capacity of that resource, and no more than 1 CPU is requested

• T_p is feasible if $\forall i[T_p(r_i) \leq max(r_i)]$
 • Here, $max(r_i)$ max time a process must wait for its needed allocation of units of resource type i
Waiting Time Policy

• Let $\sigma = (A, T, Q^S, Q^T)$

• Example finite waiting time policy:

 \[(\forall p, \sigma)(\exists \sigma')[(\text{running}'(p) \land (T'(p) \geq T(p)))]\]

 • For every process and state, there is a future state in which p is executing and has been allocated resources

• Example maximum waiting time policy:

 \[(\exists M)(\forall p, \sigma)(\exists \sigma')[(\text{running}'(p) \land (0 < T'(p) - T(p) \leq M))]\]

 • There is an upper bound M to how long it takes every process to reach a future state in which it is executing and has been allocated resources
Two Additional Constraints

In addition to all these, a DPB must satisfy these constraints:

1. Each process satisfying user agreement constraints will progress in a way that satisfies the waiting time policy

2. No resource other than the CPU is deallocated from a process unless that resource is no longer needed

\[(\forall i)[r_i \neq \text{CPU} \land A_p(r_i) \neq 0 \land A_p'(r_i) = 0] \Rightarrow Q^{T_p}(r_i) = 0\]
Example: DPB

• Assume system has 1 CPU
• Assume maximum waiting time policy in place
• 3 parts to user agreement:
 • Q^S_p, T_p are feasible
 • Process in running state executes for a minimum amount of time before it transitions to a non-running state
 • If process requires resource type, and enters a non-running state, the time it needs the resource for is decreased by the amount of time it was in the previous running state; that is,

\[
Q^T_p \neq 0 \land \text{running}(p) \land \text{asleep'}(p) \Rightarrow (\forall r \in R)[Q^T_p(r) \leq \max(0, \max_r Q^T_p(r) - (T'(p) - T(p)))]
\]
Example: System

• n processes, round robin scheduler with quantum q
• Initially no process has any resources
• Resource monitor selects process p to give resources to
 • p executes until $Q^T_p = 0$ or monitor concludes Q^S_p or T_p is not feasible
• Goal: show there will be no denial of service in this system because
 a) no resource r_i is deallocated from p for which Q^S_p is feasible until $Q^T_p = 0$; and
 b) there is a maximum time for each round robin cycle
Claim (a)

• Before \(p \) selected, no process has any resources allocated to it
 • So next process with \(Q^S_p \) and \(T_p \) feasible is selected
 • It runs until it enters the *asleep* state or \(q \), whichever is shorter
 • If in *asleep* state, process is done
 • If \(q \), monitor gives \(p \) another quantum of running time; this repeats until \(Q^T_p = 0 \), and then \(p \) needs no more resources

• Let \(m(r) \) be maximum time any process will hold resources of type \(r \)
 • Let \(M(r) = \max_r m(r) \)

• As \(Q^S_p \) and \(T_p \) feasible, \(M \) upper bound for all elements of \(Q^T_p \)
 • \(d = \min(q, \text{minimum time before } p \text{ transitions to asleep state}) \); exists because a process in running state executes for a minimum amount of time before it transitions to a non-running state
Claim (a) (con’t)

• As Q^S_p and T_p feasible, M upper bound for all elements of Q^T_p

• $d = \min(q, \text{minimum time before } p \text{ transitions to asleep state})$
 • Exists because a process in running state executes for a minimum amount of time before it transitions to a non-running state

• At end of each quantum, $m'(r) = m(r) - d$
 • By third part of user agreement

• So after $floor(M/d + 1)$ quanta, $Q^T_p = 0$
 • So no resources deallocated until $(\forall i) Q^T_p(r_i) = 0$
Claim (b)

- t_a is time between resource monitor beginning cycle and when it has allocated required resources to p
- Resource monitor then allocates CPU resource to p; call this time t_{CPU}
 - Done between each quantum
- When p completes, all its resources deallocated; this takes time t_d
- As Q^S_p and T_p feasible, time needed to run p, including time to deallocate all resources, is:
 \[t_a + \text{floor}(M/d + 1)(q + t_{CPU}) + t_d \]
- So for n processes, maximum time cycle will take is n times this
- Thus, there is a maximum time for each round robin cycle
Quiz

True or false: the system in the example uses a round robin scheduling technique. Would it be vulnerable to a denial of service attack if the scheduling algorithm were shortest job first?