
ECS 235B Module 31
State-Based Availability Models

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 1

State-Based Model (Millen)

• Unlike constraint-based model, allows a maximum waiting time to be
specified
• Based on resource allocation system, denial of service base that

enforces its policies

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 2

Resource Allocation System Model

• R set of resource types
• For each r ∈ R, number of resource units (capacity, c(r)) is constant; a

process can hold a unit for a maximum holding time m(r)
• P set of processes
• For each p ∈ P, state is running or sleeping
• When allocated a resource, process is running
• Multiple process can be in running state simultaneously
• Each p has upper bound it can be in running state before being interrupted, if

only by CPU quantum q
• Example: if CPU considered a resource, m(CPU) = q

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 3

Allocation Matrix

• Rows represent processes; columns represent resources
• A: P × R ➝ ℕ is matrix
• For p ∈ P, r ∈ R, Ap(r) is number of resource units of type r acquired by p
• As at most c(r) of resource type r exist, at most that many can be allocated at

any time

R1: The system cannot allocate more instances of a resource type than
it has:

(∀r ∈ R)[∑p∈PAp(r) ≤ c(r)]

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 4

More About Resources

• T: P ➝ ℕ is system time when resource assignment was last changed
• Think of it as a time vector, each element belonging to one process

• QS: P × R ➝ ℕ is matrix of required resources for each process, not
including the resources it already holds
• So QS

p(r) means the number of units of resource type r that process p may need to
complete

• QT: P × R ➝ ℕ is matrix of how much longer each process p needs the units
of resource r
• Predicates running(p) true if p is in running state; asleep(p) true otherwise
R2: A currently running process must not require additional resources to run

running(p) ⇒ (∀r ∈ R)[QS
p(r) = 0]

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 5

States, State Transitions

• Current state of system is (A, T, QS, QT)
• State transition (A, T, QS, QT) ➝ (Aʹ, Tʹ, QSʹ, QTʹ)
• We only care about treansitions due to allocation, deallocation of resources

• Three relevant types of transitions
• Deactivation transition: running(p) ➝ asleepʹ(p); process stops execution
• Activation transition: asleep(p) ➝ runningʹ(p); process starts or resumes

execution
• Reallocation transition: transition in which p has resource allocation changed;

can only occur when asleep(p)

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 6

Constraints

R3: Resource allocation does not affect allocations of a running
process:

(running(p) ∧ running’(p)) ⇒ (Apʹ = Ap)
R4: T(p) changes only when resource allocation of p changes:

(Apʹ(CPU) = Ap(CPU)) ⇒ (Tʹ(p) = T(p))
R5: Updates in time vector increase value of element being updated:

(Apʹ(CPU) ≠ Ap(CPU)) => (Tʹ(p) > T(p))

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 7

Constraints

R6: When p reallocated resources, allocation matrix updated before p
resumes execution:

asleep(p) ⇒ QS
pʹ = QS

p + Ap – Apʹ
R7: When a process is not running, the time it needs resources does
not change:

asleep(p) ⇒ QT
pʹ = QT

p
R8: when a process ceases to execute, the only resource it must
surrender is the CPU:
(running(p) ∧ asleep’(p)) ⇒ Apʹ(r) = Ap(r)–1 if r = CPU
(running(p) ∧ asleep’(p)) ⇒ Apʹ(r) = Ap(r) otherwise

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 8

Resource Allocation System

• A system in a state (A, T, QS, QT) such that:
• State satisfies constraints R1, R2
• All state transitions constrained to meet R3-R8

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 9

Denial of Service Protection Base (DPB)

• A mechanism that is tamperproof, cannot be prevented from
operating, and guarantees authorized access to resources it controls
• Four parts:
• Resource allocation system (see earlier)
• Resource monitor
• Waiting time policy
• User agreement (see earlier); constraints apply to changes in allocation when

process transitions from running(p) to asleep(p)

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 10

Resource Monitor

• Controls allocation, deallocation of resources and the timing
• QS

p is feasible if (∀i)[QS
p(ri) + Ap(ri) ≤ c(ri)] ∧ QS

p(CPU) ≤ 1
• If the total number of resources it will be allocated will always be no more

than the capacity of that resource, and no more than 1 CPU is requested

• Tp is feasible if (∀i)[Tp(ri) ≤ max(ri)]
• Here, max(ri) max time a process must wait for its needed allocation of units

of resource type i

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 11

Waiting Time Policy

• Let σ = (A, T, QS, QT)
• Example finite waiting time policy:

(∀p, σ)(∃σʹ)[runningʹ(p) ∧ (Tʹ(p) ≥ T(p))]
• For every process and state, there is a future state in which p is executing and

has been allocated resources

• Example maximum waiting time policy:
(∃M)(∀p, σ)(∃σʹ)[runningʹ(p) ∧ (0 < Tʹ(p) – T(p) ≤ M)]

• There is an upper bound M to how long it takes every process to reach a
future state in which it is executing and has been allocated resources

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 12

Two Additional Constraints

In addition to all these, a DPB must satisfy these constraints:
1. Each process satisfying user agreement constraints will progress in a

way that satisfies the waiting time policy
2. No resource other than the CPU is deallocated from a process

unless that resource is no longer needed
(∀i)[ri ≠ CPU ∧ Ap(ri) ≠ 0 ∧ Apʹ(ri) = 0] ⇒ QT

p(ri) = 0

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 13

Example: DPB

• Assume system has 1 CPU
• Assume maximum waiting time policy in place
• 3 parts to user agreement:
• QS

p, Tp are feasible
• Process in running state executes for a minimum amount of time before it

transitions to a non-running state
• If process requires resource type, and enters a non-running state, the time it

needs the resource for is decreased by the amount of time it was in the
previous running state; that is,

QT
p ≠ 0 ∧ running(p) ∧ asleep’(p) ⇒ (∀r∈R)[QT

p(r) ≤ max(0, maxr QT
p(r)–(Tʹ(p)–T(p)))]

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 14

Example: System

• n processes, round robin scheduler with quantum q
• Initially no process has any resources
• Resource monitor selects process p to give resources to
• p executes until QT

p = 0 or monitor concludes QS
p or Tp is not feasible

• Goal: show there will be no denial of service in this system because
a) no resource ri is deallocated from p for which QS

p is feasible until QT
p = 0;

and
b) there is a maximum time for each round robin cycle

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 15

Claim (a)

• Before p selected, no process has any resources allocated to it
• So next process with QS

p and Tp feasible is selected
• It runs until it enters the asleep state or q, whichever is shorter
• If in asleep state, process is done
• If q, monitor gives p another quantum of running time; this repeats until QT

p = 0, and
then p needs no more resources

• Let m(r) be maximum time any process will hold resources of type r
• Let M(r) = maxr m(r)

• As QS
p and Tp feasible, M upper bound for all elements of QT

p
• d = min(q, minimum time before p transitions to asleep state); exists because a

process in running state executes for a minimum amount of time before it transitions
to a non-running state

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 16

Claim (a) (con’t)

• As QS
p and Tp feasible, M upper bound for all elements of QT

p

• d = min(q, minimum time before p transitions to asleep state)
• Exists because a process in running state executes for a minimum amount of

time before it transitions to a non-running state

• At end of each quantum, mʹ(r) = m(r) – d
• By third part of user agreement

• So after floor(M/d + 1) quanta, QT
p = 0

• So no resources deallocated until (∀i) QT
p(ri) = 0

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 17

Claim (b)

• ta is time between resource monitor beginning cycle and when it has
allocated required resources to p
• Resource monitor then allocates CPU resource to p; call this time tCPU
• Done between each quantum

• When p completes, all its resources deallocated; this takes time td

• As QS
p and Tp feasible, time needed to run p, including time to

deallocate all resources, is:
ta + floor(M/d + 1)(q + tCPU) + td

• So for n processes, maximum time cycle will take is n times this
• Thus, there is a maximum time for each round robin cycle

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 18

Quiz

True or false: the system in the example uses a round robin scheduling
technique. Would it be vulnerable to a denial of service attack if the
scheduling algorithm were shortest job first?

February 7, 2022; Module 31 ECS 235B, Foundations of Computer and Information Security 19

