ECS 235B Module 44 Policy Composition I

Policy Composition I

- Assumed: Output function of input
- Means deterministic (else not function)
- Means uninterruptability (differences in timings can cause differences in states, hence in outputs)
- This result for deterministic, noninterference-secure systems

Compose Systems

- Louie, Dewey LOW
- Hughie HIGH
- b_{L} output buffer
- Anyone can read it
- b_{H} input buffer
- From HIGH source
- Hughie reads from:

- $b_{L H}$ (Louie writes)
- $b_{\text {LDH }}$ (Louie, Dewey write)
- $b_{\text {DH }}$ (Dewey writes)

Systems Secure

- All noninterference-secure

- Hughie has no output
- So inputs don't interfere with it
- Louie, Dewey have no input
- So (nonexistent) inputs don't interfere with outputs

Security of Composition

- Buffers finite, sends/receives blocking: composition not secure!
- Example: assume $b_{D H}, b_{L H}$ have capacity 1
- Algorithm:

1. Louie (Dewey) sends message to $b_{L H}\left(b_{D H}\right)$

- Fills buffer

2. Louie (Dewey) sends second message to $b_{L H}\left(b_{D H}\right)$
3. Louie (Dewey) sends a 0 (1) to b_{L}
4. Louie (Dewey) sends message to $b_{L D H}$

- Signals Hughie that Louie (Dewey) completed a cycle

Hughie

- Reads bit from b_{H}
- If 0 , receive message from $b_{L H}$
- If 1 , receive message from $b_{D H}$
- Receive on $b_{\text {LDH }}$
- To wait for buffer to be filled

Example

- Hughie reads 0 from b_{H}
- Reads message from $b_{L H}$
- Now Louie's second message goes into $b_{L H}$
- Louie completes setp 2 and writes 0 into b_{L}
- Dewey blocked at step 1
- Dewey cannot write to b_{L}
- Symmetric argument shows that Hughie reading 1 produces a 1 in b_{L}
- So, input from b_{H} copied to output b_{L}

Quiz

True or False: If a machine has no outputs, it is noninterference-secure

