ECS 235B Module 48
Entropy
Outline

• Random variables
• Joint probability
• Conditional probability
• Entropy (or uncertainty in bits)
• Joint entropy
• Conditional entropy
• Applying it to secrecy of ciphers
Random Variable

• Variable that represents outcome of an event
 • X represents value from roll of a fair die; probability for rolling n: $p(X=n) = 1/6$
 • If die is loaded so 2 appears twice as often as other numbers, $p(X=2) = 2/7$
 and, for $n \neq 2$, $p(X=n) = 1/7$

• Note: $p(X)$ means specific value for X doesn’t matter
 • Example: all values of X are equiprobable
Joint Probability

- Joint probability of X and Y, $p(X, Y)$, is probability that X and Y simultaneously assume particular values
 - If X, Y independent, $p(X, Y) = p(X)p(Y)$
- Roll die, toss coin
 - $p(X=3, Y=\text{heads}) = p(X=3)p(Y=\text{heads}) = 1/6 \times 1/2 = 1/12$
Two Dependent Events

• $X =$ roll of red die, $Y =$ sum of red, blue die rolls

 \[
 \begin{align*}
 p(Y=2) &= 1/36 \\
 p(Y=3) &= 2/36 \\
 p(Y=4) &= 3/36 \\
 p(Y=5) &= 4/36 \\
 p(Y=6) &= 5/36 \\
 p(Y=7) &= 6/36 \\
 p(Y=8) &= 5/36 \\
 p(Y=9) &= 4/36 \\
 p(Y=10) &= 3/36 \\
 p(Y=11) &= 2/36 \\
 p(Y=12) &= 1/36
 \end{align*}
 \]

• Formula:
 \[
 p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108
 \]

• But if the red die (X) rolls 1, the most their sum (Y) can be is 7

• The problem is X and Y are dependent
Conditional Probability

• Conditional probability of X given Y, $p(X \mid Y)$, is probability that X takes on a particular value given Y has a particular value

• Continuing example ...
 • $p(Y=7 \mid X=1) = 1/6$
 • $p(Y=7 \mid X=3) = 1/6$
Relationship

- \(p(X, Y) = p(X | Y) \ p(Y) = p(X) \ p(Y | X) \)

- Example:
 \[
p(X=3, Y=8) = p(X=3 | Y=8) \ p(Y=8) = (1/5)(5/36) = 1/36
\]

- Note: if \(X, Y \) independent:
 \[
p(X | Y) = p(X)
\]
Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 • Therefore entropy of X is $H(X) = 1$
• Formal definition: random variable X, values $x_1, ..., x_n$; so

\[\sum_i p(X = x_i) = 1; \text{ then entropy is:} \]

\[H(X) = -\sum_i p(X=x_i) \lg p(X=x_i) \]
Heads or Tails?

• $H(X) = - p(X=\text{heads}) \lg p(X=\text{heads}) - p(X=\text{tails}) \lg p(X=\text{tails})$

 $= - (1/2) \lg (1/2) - (1/2) \lg (1/2)$

 $= - (1/2) (-1) - (1/2) (-1) = 1$

• Confirms previous intuitive result
n-Sided Fair Die

\[H(X) = - \sum_i p(X = x_i) \lg p(X = x_i) \]

As \(p(X = x_i) = 1/n \), this becomes

\[H(X) = - \sum_i (1/n) \lg (1/n) = -n(1/n) (-\lg n) \]

so

\[H(X) = \lg n \]

which is the number of bits in \(n \), as expected
Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

W represents the winner. What is its entropy?

- $w_1 = \text{Ann}, w_2 = \text{Pam}, w_3 = \text{Paul}$
- $p(W=w_1) = p(W=w_2) = 2/5, p(W=w_3) = 1/5$

- So $H(W) = -\sum_i p(W=w_i) \log_2 p(W=w_i)$
 $= - (2/5) \log_2 (2/5) - (2/5) \log_2 (2/5) - (1/5) \log_2 (1/5)$
 $= - (4/5) + \log_2 5 \approx -1.52$

- If all equally likely to win, $H(W) = \log_2 3 \approx 1.58$
Joint Entropy

• X takes values from \{ x_1, ..., x_n \}, and $\sum_i p(X=x_i) = 1$
• Y takes values from \{ y_1, ..., y_m \}, and $\sum_i p(Y=y_i) = 1$
• Joint entropy of X, Y is:

$$H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \log_p p(X=x_i, Y=y_j)$$
Example

X: roll of fair die, Y: flip of coin
As X, Y are independent:

$$p(X=1, Y=\text{heads}) = p(X=1) \cdot p(Y=\text{heads}) = \frac{1}{12}$$

and

$$H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \log p(X=x_i, Y=y_j)$$

$$= -2 \left[6 \left[(\frac{1}{12}) \log (\frac{1}{12}) \right] \right] = \log 12$$
Conditional Entropy (Equivocation)

• X takes values from $\{x_1, \ldots, x_n\}$ and $\sum_i p(X=x_i) = 1$

• Y takes values from $\{y_1, \ldots, y_m\}$ and $\sum_i p(Y=y_i) = 1$

• Conditional entropy of X given $Y=y_j$ is:

$$H(X \mid Y=y_j) = -\sum_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j)$$

• Conditional entropy of X given Y is:

$$H(X \mid Y) = -\sum_j p(Y=y_j) \sum_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j)$$
Example

• X roll of red die, Y sum of red, blue roll

• Note $p(X=1 | Y=2) = 1$, $p(X=i | Y=2) = 0$ for $i \neq 1$
 • If the sum of the rolls is 2, both dice were 1

• Thus

$$H(X | Y=2) = -\sum_i p(X=x_i | Y=2) \log p(X=x_i | Y=2) = 0$$
Example (con’t)

- Note $p(X=i, Y=7) = 1/6$
 - If the sum of the rolls is 7, the red die can be any of 1, ..., 6 and the blue die must be 7—roll of red die

- $H(X|Y=7) = -\sum_i p(X=x_i|Y=7) \lg p(X=x_i|Y=7)$

 $= -6 \frac{1}{6} \lg \frac{1}{6} = \lg 6$
Example: Perfect Secrecy

• Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
• $M = \{ m_1, ..., m_n \}$ set of messages
• $C = \{ c_1, ..., c_n \}$ set of messages
• Cipher $c_i = E(m_i)$ achieves perfect secrecy if $H(M | C) = H(M)$
Quiz

What is the entropy of a 20-sided die?

1. 20
2. 1/20
3. log 20 (or log_{10} 20)
4. lg 20 (or log_{2} 20)