ECS 235B Module 50 Information Flow Policies

Information Flow Policies

Information flow policies are usually:

- reflexive
 - So information can flow freely among members of a single class
- transitive
 - So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3

Non-Transitive Policies

- Betty is a confident of Anne
- Cathy is a confident of Betty
 - With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy's spouse
 - Transitivity undesirable in this case, probably

Non-Lattice Transitive Policies

- 2 faculty members co-PIs on a grant
 - Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
 - Reflexive and transitive
- But some elements (people) have no "least upper bound" element
 - What is it for the faculty members?

Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy $I = (SC_l, \leq_l, join_l)$:
 - *SC*₁ set of security classes
 - \leq_l ordering relation on elements of SC_l
 - *join*, function to combine two elements of *SC*,
- Example: Bell-LaPadula Model
 - *SC*₁ set of security compartments
 - ≤, ordering relation *dom*
 - *join*, function *lub*

Confinement Flow Model

- $(I, O, confine, \rightarrow)$
 - $I = (SC_1, \leq_1, join_1)$
 - O set of entities
 - \rightarrow : $O \times O$ with $(a, b) \in \rightarrow$ (written $a \rightarrow b$) iff information can flow from a to b
 - for $a \in O$, $confine(a) = (a_L, a_U) \in SC_I \times SC_I$ with $a_L \leq_I a_U$
 - Interpretation: for $a \in O$, if $x \le_l a_U$, information can flow from x to a, and if $a_L \le_l x$, information can flow from a to x
 - So a_L lowest classification of information allowed to flow out of a, and a_U highest classification of information allowed to flow into a

Assumptions, etc.

- Assumes: object can change security classes
 - So, variable can take on security class of its data
- Object x has security class x currently
- Note transitivity not required
- If information can flow from a to b, then b dominates a under ordering of policy I:

$$(\forall a, b \in O)[a \rightarrow b \Rightarrow a_L \leq_l b_U]$$

Example 1

- $SC_i = \{ U, C, S, TS \}$, with $U \leq_i C, C \leq_i S$, and $S \leq_i TS$
- $a, b, c \in O$
 - confine(a) = [C, C]
 - confine(b) = [S, S]
 - confine(*c*) = [TS, TS]
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$
 - As $a_L \leq_l b_U$, $a_L \leq_l c_U$, $b_L \leq_l c_U$
 - Transitivity holds

Example 2

- SC_{l} , \leq_{l} as in Example 1
- $x, y, z \in O$
 - confine(x) = [C, C]
 - confine(y) = [S, S]
 - confine(z) = [C, TS]
- Secure information flows: $x \rightarrow y$, $x \rightarrow z$, $y \rightarrow z$, $z \rightarrow x$, $z \rightarrow y$
 - As $x_{L} \leq_{l} y_{U}$, $x_{L} \leq_{l} z_{U}$, $y_{L} \leq_{l} z_{U}$, $z_{L} \leq_{l} x_{U}$, $z_{L} \leq_{l} y_{U}$
 - Transitivity does not hold
 - $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_L \leq_I x_U$ is false

Transitive Non-Lattice Policies

- Q = (S_Q, \leq_Q) is a *quasi-ordered set* when \leq_Q is transitive and reflexive over S_Q
- How to handle information flow?
 - Define a partially ordered set containing quasi-ordered set
 - Add least upper bound, greatest lower bound to partially ordered set
 - It's a lattice, so apply lattice rules!

In Detail ...

- $\forall x \in S_Q$: let $f(x) = \{ y \mid y \in S_Q \land y \leq_Q x \}$
 - Define $S_{OP} = \{ f(x) \mid x \in S_O \}$
 - Define $\leq_{OP} = \{ (x, y) \mid x, y \in S_{OP} \land x \subseteq y \}$
 - S_{QP} partially ordered set under \leq_{QP}
 - f preserves order, so $y \le_Q x$ iff $f(x) \le_{QP} f(y)$
- Add upper, lower bounds
 - $S_{QP}' = S_{QP} \cup \{ S_Q, \emptyset \}$
 - Upper bound $ub(x, y) = \{ z \mid z \in S_{QP} \land x \subseteq z \land y \subseteq z \}$
 - Least upper bound $lub(x, y) = \cap ub(x, y)$
 - Lower bound, greatest lower bound defined analogously

And the Policy Is ...

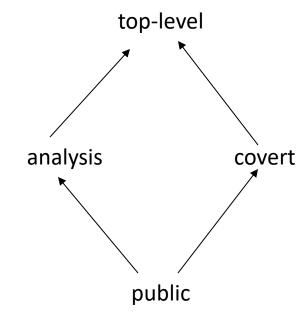
- Now (S_{QP}', \leq_{QP}) is lattice
- Information flow policy on quasi-ordered set emulates that of this lattice!

Nontransitive Flow Policies

- Government agency information flow policy (on next slide)
- Entities public relations officers PRO, analysts A, spymasters S
 - confine(PRO) = [public, analysis]
 - confine(A) = [analysis, top-level]
 - confine(S) = [covert, top-level]

Information Flow

- By confinement flow model:
 - PRO \leq A, A \leq PRO
 - PRO ≤ S
 - $A \leq S, S \leq A$
- Data cannot flow to public relations officers; not transitive
 - $S \le A$, $A \le PRO$
 - S ≤ PRO is *false*



Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 - Done so this set is partially ordered
 - Means it can be transformed into a lattice
- Can show this mapping preserves ordering relation
 - So it preserves non-orderings and non-transitivity of elements corresponding to those of original set

Dual Mapping

- $R = (SC_R, \leq_R, join_R)$ reflexive info flow policy
- $P = (S_P, \leq_P)$ ordered set
 - Define dual mapping functions I_R , h_R : $SC_R \rightarrow S_P$
 - $I_R(x) = \{x\}$
 - $h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \}$
 - S_P contains subsets of SC_R ; \leq_P subset relation
 - Dual mapping function order preserving iff

$$(\forall a, b \in SC_R)[a \leq_R b \Leftrightarrow I_R(a) \leq_P h_R(b)]$$

Theorem

Dual mapping from reflexive information flow policy R to ordered set P order-preserving

Proof sketch: all notation as before

(⇒) Let $a \leq_R b$. Then $a \in I_R(a)$, $a \in h_R(b)$, so $I_R(a) \subseteq h_R(b)$, or $I_R(a) \leq_P h_R(b)$

 (\Leftarrow) Let $I_R(a) \leq_P h_R(b)$. Then $I_R(a) \subseteq h_R(b)$. But $I_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq_R b$

Information Flow Requirements

- Interpretation: let $confine(x) = [\underline{x}_L, \underline{x}_U]$, consider class \underline{y}
 - Information can flow from x to element of \underline{y} iff $\underline{x}_{L} \leq_{R} \underline{y}$, or $I_{R}(\underline{x}_{L}) \subseteq h_{R}(\underline{y})$
 - Information can flow from element of \underline{y} to x iff $y \leq_R \underline{x}_U$, or $I_R(\underline{y}) \subseteq h_R(\underline{x}_U)$

Revisit Government Example

- Information flow policy is R
- Flow relationships among classes are:

```
public \leq_R public
```

public \leq_R analysis

public \leq_R covert

public \leq_R top-level

analysis \leq_R top-level

analysis \leq_R analysis

covert \leq_R covert

covert \leq_R top-level

top-level \leq_R top-level

Dual Mapping of R

• Elements I_R , h_R : $I_R(\text{public}) = \{ \text{ public } \}$ h_R (public = { public } I_R (analysis) = { analysis } h_R (analysis) = { public, analysis } I_R (covert) = { covert } $h_R(\text{covert}) = \{ \text{ public, covert } \}$ I_R (top-level) = { top-level } $h_R(\text{top-level}) = \{ \text{ public, analysis, covert, top-level } \}$

confine

- Let p be entity of type PRO, a of type A, s of type S
- In terms of *P* (not *R*), we get:
 - confine(p) = [{ public }, { public, analysis }]
 - confine(a) = [{ analysis }, { public, analysis, covert, top-level }]
 - confine(s) = [{ covert }, { public, analysis, covert, top-level }]

And the Flow Relations Are ...

- $p \rightarrow a$ as $I_R(p) \subseteq h_R(a)$
 - $I_R(p) = \{ \text{ public } \}$
 - $h_R(a) = \{ \text{ public, analysis, covert, top-level } \}$
- Similarly: $a \rightarrow p$, $p \rightarrow s$, $a \rightarrow s$, $s \rightarrow a$
- But $s \to p$ is false as $I_R(s) \not\subset h_R(p)$
 - $I_R(s) = \{ \text{ covert } \}$
 - $h_R(p) = \{ \text{ public, analysis } \}$

Analysis

- (S_P, \leq_P) is a lattice, so it can be analyzed like a lattice policy
- Dual mapping preserves ordering, hence non-ordering and nontransitivity, of original policy
 - So results of analysis of (S_P, \leq_P) can be mapped back into $(SC_R, \leq_R, join_R)$

Quiz

Which of the following is most correct about non-lattice policies?

- 1. They indicate that whoever designed the policy doesn't know what they are doing
- 2. They are important to analyze policy models, but never occur in the "real world"
- 3. They can be embedded in lattice policies, and hence can be analyzed in the same way
- 4. They are isomorphic with lattice policies