
ECS 235B Module 52
Execution Based

Information Flow Mechanisms

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 1



Execution-Based Mechanisms

• Detect and stop flows of information that violate policy
• Done at run time, not compile time

• Obvious approach: check explicit flows
• Problem: assume for security, x ≤ y

if x = 1 then y := a;
• When x ≠ 1, x = High, y = Low, a = Low, appears okay—but implicit flow 

violates condition!

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 2



Fenton’s Data Mark Machine

• Each variable has an associated class
• Program counter (PC) has one too
• Idea: branches are assignments to PC, so you can treat implicit flows 

as explicit flows
• Stack-based machine, so everything done in terms of pushing onto 

and popping from a program stack

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 3



Instruction Description

• skip: instruction not executed
• push(x, x): push variable x and its security class x onto program 

stack
• pop(x, x) : pop top value and security class from program stack, 

assign them to variable x and its security class x respectively

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 4



Instructions

• x := x + 1 (increment)
• Same as:
if PC ≤ x then x := x + 1 else skip

• if x = 0 then goto n else x := x – 1 (branch and save PC on 
stack)
• Same as:
if x = 0 then begin
push(PC, PC); PC := lub{PC, x}; PC := n;
end else if PC ≤ x then
x := x - 1

else
skip;

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 5



More Instructions

• if’ x = 0 then goto n else x := x – 1 (branch without 
saving PC on stack)
• Same as:
if x = 0 then
if x ≤ PC then PC := n else skip

else
if PC ≤ x then x := x - 1 else skip

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 6



More Instructions

• return (go to just after last if)
• Same as:
pop(PC, PC);

• halt (stop)
• Same as:
if program stack empty then halt
• Note stack empty to prevent user obtaining information from it after halting

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 7



Example Program

1 if x = 0 then goto 4 else x := x - 1
2 if z = 0 then goto 6 else z := z - 1
3 halt
4 z := z - 1
5 return
6 y := y - 1
7 return
Initially x = 0 or x = 1, y = 0, z = 0
Program copies value of x to y

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 8



Example Execution

x y z PC PC stack check
1 0 0 1 Low —
0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y
0 1 0 7 z (3, Low)
0 1 0 3 Low —

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 9



Handling Errors

• Ignore statement that causes error, but continue execution
• If aborted or a visible exception taken, user could deduce information
• Means errors cannot be reported unless user has clearance at least equal to 

that of the information causing the error

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 10



Variable Classes

• Up to now, classes fixed
• Check relationships on assignment, etc.

• Consider variable classes
• Fenton’s Data Mark Machine does this for PC
• On assignment of form y := f(x1, …, xn), y changed to lub{ x1, …, xn }
• Need to consider implicit flows, also

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 11



Example Program

(* Copy value from x to y. Initially, x is 0 or 1 *)
proc copy(x: integer class { x };

var y: integer class { y })
var z: integer class variable { Low };
begin
y := 0;
z := 0;
if x = 0 then z := 1;
if z = 0 then y := 1;

end;
• z changes when z assigned to
• Assume y < x (that is, x strictly dominates y; they are not equal)

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 12



Analysis of Example

• x = 0
• z := 0 sets z to Low
• if x = 0 then z := 1 sets z to 1 and z to x
• So on exit, y = 0

• x = 1
• z := 0 sets z to Low
• if z = 0 then y := 1 sets y to 1 and checks that lub{Low, z} ≤ y
• So on exit, y = 1

• Information flowed from x to y even though y < x

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 13



Handling This (1)

• Fenton’s Data Mark Machine detects implicit flows violating 
certification rules

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 14



Handling This (2)

• Raise class of variables assigned to in conditionals even when branch 
not taken
• Also, verify information flow requirements even when branch not 

taken
• Example:
• In if x = 0 then z := 1, z raised to x whether or not x = 0
• Certification check in next statement, that z ≤ y, fails, as z = x from previous 

statement, and y < x

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 15



Handling This (3)

• Change classes only when explicit flows occur, but all flows (implicit 
as well as explicit) force certification checks
• Example
• When x = 0, first if sets z to Low, then checks x ≤ z
• When x = 1, first if checks x ≤ z
• This holds if and only if x = Low

• Not possible as y < x = Low by assumption and there is no class that Low strictly 
dominates

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 16



Quiz

Should a statement that causes an error be ignored, and execution 
continue?
1. Yes; if the program is aborted or a visible exception is taken, the 

user could deduce information about values in the program
2. Yes; such a statement cannot be certified and so it must be ignored
3. No; the user must be informed lest they draw an incorrect 

conclusion about values in the program
4. No; the user’s clearance may allow them to see that an error 

occurred

February 25, 2022; Module 52 ECS 235B, Foundations of Computer and Information Security 17


