Table of Notation for Noninterference and Nondeducibility

symbol	meaning
S	set of subjects s
Σ	set of states σ
0	set of outputs o
	set of commands z
С	set of state transition commands (s, z) , where subject s executes command z
C^*	set of possible sequences of commands c_0, \ldots, c_n
ν	empty sequence
C _s	sequence of commands
$T(c, \mathbf{\sigma}_i)$	resulting state when command <i>c</i> is executed in state σ_i
$T^*(c_s, \sigma_i)$	resulting state when command sequence c_s is executed in state σ_i
$P(c, \sigma_i)$	output when command <i>c</i> is executed in state σ_i
$P^*(c_s, \sigma_i)$	output when command sequence c_s is executed in state σ_i
$proj(s,c_s,\sigma_i)$	set of outputs in $P^*(c_s, \sigma_i)$ that subject s is authorized to see
$\pi_{G,A}(c_s)$	subsequence of c_s with all elements (s, z) , $s \in G$ and $z \in A$ deleted
dom(c)	protection domain in which c is executed
$\sim^{dom(c)}$	equivalence relation on system states
$\pi'_d(c_s)$	analogoua to π above, but with protection domain and subject included