ECS 235B Module 6
HRU Result
What Is “Secure”?

• Adding a generic right r where there was not one is “leaking”
 • In what follows, a right leaks if it was not present \textit{initially}
 • Alternately: not present \textit{in the previous state} (not discussed here)

• If a system S, beginning in initial state s_0, cannot leak right r, it is \textit{safe with respect to the right r}
 • Otherwise it is called \textit{unsafe with respect to the right r}
Safety Question

• Is there an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 • Here, “safe” = “secure” for an abstract model
Mono-Operational Commands

• Answer: yes

• Sketch of proof:
 Consider minimal sequence of commands c_1, \ldots, c_k to leak the right.
 • Can omit delete, destroy (with some rewriting)
 • Can merge all creates into one
 Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \leq n(s+1)(o+1)+1$
General Case

• Answer: *no*

• Sketch of proof:
 Reduce halting problem to safety problem
 Turing Machine review:
 • Infinite tape in one direction
 • States K, symbols M; distinguished blank b
 • Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 • Halting state is q_f; TM halts when it enters this state
Mapping

Current state is k

<table>
<thead>
<tr>
<th></th>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td></td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td></td>
<td>C k</td>
<td></td>
<td>own</td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td></td>
<td></td>
<td>D end</td>
</tr>
</tbody>
</table>
Mapping

After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state
Command Mapping

\[\delta(k, C) = (k_1, X, R) \] at intermediate becomes

\[
\text{command } c_{k,C}(s_3, s_4) \\
\text{if own in } A[s_3, s_4] \text{ and } k \text{ in } A[s_3, s_3] \\
\hspace{1em} \text{and } C \text{ in } A[s_3, s_3] \\
\text{then} \\
\hspace{1em} \text{delete } k \text{ from } A[s_3, s_3]; \\
\hspace{1em} \text{delete } C \text{ from } A[s_3, s_3]; \\
\hspace{1em} \text{enter } X \text{ into } A[s_3, s_3]; \\
\hspace{1em} \text{enter } k_1 \text{ into } A[s_4, s_4]; \\
\text{end}
\]
Mapping

After $\delta(k_1, D) = (k_2, Y, R)$ where k_1 is the current state and k_2 the next state
Command Mapping

- $\delta(k_1, D) = (k_2, Y, R)$ at end becomes

```plaintext
command crightmost_{k,C}(s_4,s_5)
if end in A[s_4,s_4] and k_1 in A[s_4,s_4] and D in A[s_4,s_4]
then
delete end from A[s_4,s_4];
delete k_1 from A[s_4,s_4];
delete D from A[s_4,s_4];
enter Y into A[s_4,s_4];
create subject s_5;
enter own into A[s_5,s_5];
enter end into A[s_5,s_5];
enter k_2 into A[s_5,s_5];
end
```
Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 \textit{end} right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command

- If TM enters state q_f, then right has leaked

- If safety question decidable, then represent TM as above and determine if q_f leaks
 - Implies halting problem decidable

- Conclusion: safety question undecidable
Other Results

• Set of unsafe systems is recursively enumerable
• Delete \texttt{create} primitive; then safety question is complete in P-SPACE
• Delete \texttt{destroy, delete} primitives; then safety question is undecidable
 • Systems are monotonic
• Safety question for biconditional protection systems is decidable
• Safety question for monoconditional, monotonic protection systems is decidable
• Safety question for monoconditional protection systems with \texttt{create, enter, delete} (and no \texttt{destroy}) is decidable.