ECS 235B Module 12
Typed Access Matrix Model
Typed Access Matrix Model

• Like ACM, but with set of types T
 • All subjects, objects have types
 • Set of types for subjects TS

• Protection state is (S, O, τ, A)
 • $\tau: O \rightarrow T$ specifies type of each object
 • If X subject, $\tau(X)$ in TS
 • If X object, $\tau(X)$ in $T - TS$
Create Rules

• Subject creation
 • create subject \(s \) of type \(ts \)
 • \(s \) must not exist as subject or object when operation executed
 • \(ts \in TS \)

• Object creation
 • create object \(o \) of type \(to \)
 • \(o \) must not exist as subject or object when operation executed
 • \(to \in T – TS \)
Create Subject

• Precondition: $s \notin S$

• Primitive command: **create subject s of type t**

• Postconditions:
 • $S' = S \cup \{s\}, \quad O' = O \cup \{s\}$
 • $(\forall y \in O)[\tau'(y) = \tau(y)], \quad \tau'(s) = t$
 • $(\forall y \in O')[a'[s, y] = \emptyset], \quad (\forall x \in S')[a'[x, s] = \emptyset]$
 • $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$
Create Object

• Precondition: \(o \notin O \)
• Primitive command: create object \(o \) of type \(t \)
• Postconditions:
 • \(S' = S, \ O' = O \cup \{ o \} \)
 • \((\forall y \in O)[\tau'(y) = \tau(y)], \ \tau'(o) = t \)
 • \((\forall x \in S')[a'[x, o] = \emptyset] \)
 • \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]] \)
Definitions

• MTAM Model: TAM model without delete, destroy
 • MTAM is Monotonic TAM

• $\alpha(x_1:t_1, \ldots, x_n:t_n)$ create command
 • t_i child type in α if any of create subject x_i of type t_i or create object x_i of type t_i occur in α
 • t_i parent type otherwise
Cyclic Creates

\[\text{command } \text{cry\cdothavoc}(s_1 : u, s_2 : u, o_1 : v, o_2 : v, \]
\[\hspace{1cm} o_3 : w, o_4 : w) \]
\[\text{create subject } s_1 \text{ of type } u; \]
\[\text{create object } o_1 \text{ of type } v; \]
\[\text{create object } o_3 \text{ of type } w; \]
\[\text{enter } r \text{ into } a[s_2, s_1]; \]
\[\text{enter } r \text{ into } a[s_2, o_2]; \]
\[\text{enter } r \text{ into } a[s_2, o_4] \]
\[\text{end} \]
Creation Graph

- u, v, w child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles
Acyclic Creates

\[
\text{command } \textit{cry•havoc}(s_1 : u, s_2 : u, o_1 : v, o_3 : w) \\
\text{create object } o_1 \text{ of type } v; \\
\text{create object } o_3 \text{ of type } w; \\
\text{enter } r \text{ into } a[s_2, s_1]; \\
\text{enter } r \text{ into } a[s_2, o_1]; \\
\text{enter } r \text{ into } a[s_2, o_3] \\
\text{end}
\]
Creation Graph

- \(v, w \) child types
- \(u \) parent type
- Graph: lines from parent types to child types
- This one has no cycles
Theorems

• Safety decidable for systems with acyclic MTAM schemes
 • In fact, it’s \textit{NP-hard}

• Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 • “Ternary” means commands have no more than 3 parameters
 • Equivalent in expressive power to MTAM