ECS 235B Module 19
Applying the Bell-LaPadula Model
Rule

• $\rho: R \times V \rightarrow D \times V$

• Takes a state and a request, returns a decision and a (possibly new) state

• Rule ρ ssc-preserving if for all $(r, v) \in R \times V$ and v satisfying ssc rel f, $\rho(r, v) = (d, v')$ means that v' satisfies ssc rel f'.
 - Similar definitions for *-property, ds-property
 - If rule meets all 3 conditions, it is security-preserving
Unambiguous Rule Selection

• Problem: multiple rules may apply to a request in a state
 • if two rules act on a read request in state \(v \) ...

• Solution: define relation \(W(\omega) \) for a set of rules \(\omega = \{ \rho_1, \ldots, \rho_m \} \) such that a state \((r, d, v, v') \in W(\omega) \) iff either
 • \(d = i \); or
 • for exactly one integer \(j \), \(\rho_j(r, v) = (d, v') \)

• Either request is illegal, or only one rule applies
Rules Preserving SSC

• Let \(\omega \) be set of ssc-preserving rules. Let state \(z_0 \) satisfy simple security condition. Then \(\Sigma(R, D, W(\omega), z_0) \) satisfies simple security condition

Proof: by contradiction.

• Choose \((x, y, z) \in \Sigma(R, D, W(\omega), z_0)\) as state not satisfying simple security condition; then choose \(t \in N \) such that \((x_t, y_t, z_t)\) is first appearance not meeting simple security condition

• As \((x_t, y_t, z_t, z_{t-1}) \in W(\omega)\), there is unique rule \(\rho \in \omega \) such that \(\rho(x_t, z_{t-1}) = (y_t, z_t) \) and \(y_t \neq i \).

• As \(\rho \) ssc-preserving, and \(z_{t-1} \) satisfies simple security condition, then \(z_t \) meets simple security condition, contradiction.
Adding States Preserving SSC

• Let \(v = (b, m, f, h) \) satisfy simple security condition. Let \((s, o, p) \notin b, b' = b \cup \{ (s, o, p) \} \), and \(v' = (b', m, f, h) \). Then \(v' \) satisfies simple security condition iff:
 1. Either \(p = _e \) or \(p = a \); or
 2. Either \(p = r \) or \(p = w \), and \(f_c(s) \text{ dom } f_o(o) \)

Proof:
 1. Immediate from definition of simple security condition and \(v' \) satisfying \(ssc \text{ rel } f \)
 2. \(v' \) satisfies simple security condition means \(f_s(s) \text{ dom } f_o(o) \), and for converse, \((s, o, p) \in b' \) satisfies \(ssc \text{ rel } f \), so \(v' \) satisfies simple security condition
Rules, States Preserving *-Property

• Let ω be set of *-property-preserving rules, state z_0 satisfies the *-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies *-property.

• Let $v = (b, m, f, h)$ satisfy *-property. Let $(s, o, p) \notin b$, $b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies *-property iff one of the following holds:
 1. $p = a$ and $f_o(o) \text{ dom } f_c(s)$
 2. $p = w$ and $f_c(s) = f_o(o)$
 3. $p = r$ and $f_c(s) \text{ dom } f_o(o)$
Rules, States Preserving ds-Property

• Let ω be set of ds-property-preserving rules, state z_0 satisfies ds-property. Then $\Sigma(R, D, W(\omega), z_0)$ satisfies ds-property.

• Let $v = (b, m, f, h)$ satisfy ds-property. Let $(s, o, p) \not\in b$, $b' = b \cup \{ (s, o, p) \}$, and $v' = (b', m, f, h)$. Then v' satisfies ds-property iff $p \in m[s, o]$.
Combining

• Let ρ be a rule and $\rho(r, \nu) = (d, \nu')$, where $\nu = (b, m, f, h)$ and $\nu' = (b', m', f', h')$. Then:
 1. If $b' \subseteq b$, $f' = f$, and ν satisfies the simple security condition, then ν' satisfies the simple security condition
 2. If $b' \subseteq b$, $f' = f$, and ν satisfies the *-property, then ν' satisfies the *-property
 3. If $b' \subseteq b$, $m[s, o] \subseteq m'[s, o]$ for all $s \in S$ and $o \in O$, and ν satisfies the ds-property, then ν' satisfies the ds-property
Proof

1. Suppose \(v \) satisfies simple security property.

 a) \(b' \subseteq b \) and \((s, o, r) \in b'\) implies \((s, o, r) \in b\)

 b) \(b' \subseteq b \) and \((s, o, w) \in b'\) implies \((s, o, w) \in b\)

 c) So \(f_s(s) \text{dom } f_o(o) \)

 d) But \(f' = f \)

 e) Hence \(f'_s(s) \text{dom } f'_o(o) \)

 f) So \(v' \) satisfies simple security condition

2, 3 proved similarly
Example Instantiation: Multics

- 11 rules affect rights:
 - set to request, release access
 - set to give, remove access to different subject
 - set to create, reclassify objects
 - set to remove objects
 - set to change subject security level

- Set of “trusted” subjects $S_T \subseteq S$
 - *-property not enforced; subjects trusted not to violate it

- $\Delta(\rho)$ domain
 - determines if components of request are valid
get-read Rule

- Request $r = (get, s, o, r)$
 - s gets (requests) the right to read o
- Rule is $\rho_1(r, v)$:


  ```
  if ($r \neq \Delta(\rho_1)$) then $\rho_1(r, v) = (i, v)$;
  else if ($f_s(s) \text{ dom } f_o(o)$ and [$s \in S_T$ or $f_s(s) \text{ dom } f_o(o)$] and $r \in m[s, o]$)
    then $\rho_1(r, v) = (y, (b \cup \{ (s, o, r) \}, m, f, h))$;
  else $\rho_1(r, v) = (n, v)$;
  ```

Security of Rule

• The get-read rule preserves the simple security condition, the *-property, and the ds-property

Proof:

• Let \(v \) satisfy all conditions. Let \(\rho_1 (r, v) = (d, v') \). If \(v' = v \), result is trivial. So let \(v' = (b \cup \{ (s_2, o, r) \}, m, f, h) \).
Proof

• Consider the simple security condition.
 • From the choice of v', either $b' - b = \emptyset$ or \{ (s_2, o, r) \}
 • If $b' - b = \emptyset$, then \{ (s_2, o, r) \} $\in b$, so $v = v'$, proving that v' satisfies the simple security condition.
 • If $b' - b = \{ (s_2, o, r) \}$, because the get-read rule requires that $f_s(s) \ dom f_o(o)$, an earlier result says that v' satisfies the simple security condition.
Proof

• Consider the *-property.
 • Either $s_2 \in S_T$ or $f_c(s) \text{ dom } f_o(o)$ from the definition of get-read
 • If $s_2 \in S_T$, then s_2 is trusted, so *-property holds by definition of trusted and S_T.
 • If $f_c(s) \text{ dom } f_o(o)$, an earlier result says that v' satisfies the *-property.
Proof

• Consider the discretionary security property.
 • Conditions in the \textit{get-read} rule require \(r \in m[s, o] \) and either \(b' - b = \emptyset \) or \(\{ (s_2, o, r) \} \)
 • If \(b' - b = \emptyset \), then \(\{ (s_2, o, r) \} \in b \), so \(v = v' \), proving that \(v' \) satisfies the simple security condition.
 • If \(b' - b = \{ (s_2, o, r) \} \), then \(\{ (s_2, o, r) \} \notin b \), an earlier result says that \(v' \) satisfies the ds-property.
give-read Rule

• Request \(r = (s_1, \text{give}, s_2, o, r) \)
 • \(s_1 \) gives (request to give) \(s_2 \) the (discretionary) right to read \(o \)
 • Rule: can be done if giver can alter parent of object
 • If object or parent is root of hierarchy, special authorization required

• Useful definitions
 • \(\text{root}(o) \): root object of hierarchy \(h \) containing \(o \)
 • \(\text{parent}(o) \): parent of \(o \) in \(h \) (so \(o \in h(\text{parent}(o)) \))
 • \(\text{canallow}(s, o, v) \): \(s \) specially authorized to grant access to \(o \) in state \(v \) when object or parent of object is root of hierarchy
 • \(m \land m[s, o] \leftarrow r : \) access control matrix \(m \) with \(r \) added to \(m[s, o] \)
give-read Rule

• Rule is $\rho_6(r, v)$:

 if ($r \neq \Delta(\rho_6)$) then $\rho_6(r, v) = (i, v)$;
 else if ($[o \neq root(o) \text{ and } parent(o) \neq root(o) \text{ and } parent(o) \in b(s_1:w)]$ or
 [$parent(o) = root(o) \text{ and } canallow(s_1, o, v)$] or
 [$o = root(o) \text{ and } canallow(s_1, o, v)$]
 then $\rho_6(r, v) = (y, (b, m \land m[s_2, o] \leftarrow i, f, h))$;
 else $\rho_1(r, v) = (n, v)$;
Security of Rule

• The *give-read* rule preserves the simple security condition, the *-property, and the ds-property

 • Proof: Let v satisfy all conditions. Let $\rho_1(r, v) = (d, v')$. If $v' = v$, result is trivial. So let $v' = (b, m[s_2, o] \leftarrow r, f, h)$. So $b' = b, f' = f, m[x, y] = m'[x, y]$ for all $x \in S$ and $y \in O$ such that $x \neq s$ and $y \neq o$, and $m[s, o] \subseteq m'[s, o]$. Then by earlier result, v' satisfies the simple security condition, the *-property, and the ds-property.