ECS 235B Module 38
Generalized Noninterference
Policies Changing Over Time

• Problem: previous analysis assumes static system
 • In real life, ACM changes as system commands issued

• Example: $w \in C^*$ leads to current state
 • $cando(w, s, z)$ holds if s can execute z in current state
 • Condition noninterference on $cando$
 • If $\neg cando(w, \text{Lara, “write } f”)$, Lara can’t interfere with any other user by writing file f
Generalize Noninterference

- $G \subseteq S$ set of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, ..., c_n) \in C^*$
- $\pi''(v) = v$
- $\pi'''((c_1, ..., c_n)) = (c_1', ..., c_n')$, where
 - $c_i' = v$ if $p(c_1', ..., c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise
Intuition

• $\pi''(c_s) = c_s$

• But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command ν
 • Just like deleting entries from c_s as $\pi_{A,G}$ does earlier
Noninterference

- $G, G' \subseteq S$ sets of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in G executing commands in A are noninterfering with users in G' under condition p iff, for all $c_s \in C^*$ and for all $s \in G'$, $\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, \pi''(c_s), \sigma_i)$
 - Written $A,G :| G'$ if p
Example

• From earlier one, simple security policy based on noninterference:

\[\forall (s \in S) \forall (z \in Z) [\{z\}, \{s\} :| S \textbf{ if } \neg \text{cando}(w, s, z)] \]

• If subject can’t execute command (the \(\neg \text{cando}\) part) in any state, subject can’t use that command to interfere with another subject
Another Example

• Consider system in which rights can be passed
 • $\text{pass}(s, z)$ gives s right to execute z
 • $w_n = v_1, \ldots, v_n$ sequence of $v_i \in C^*$
 • $\text{prev}(w_n) = w_{n-1}; \text{last}(w_n) = v_n$
Policy

• No subject s can use z to interfere if, in previous state, s did not have right to z, and no subject gave it to s

$$\{ z \}, \{ s \} :| S$$

$$\text{if } [\neg \text{cando}(\text{prev}(w), s, z) \land [\text{cando}(\text{prev}(w), s', \text{pass}(s, z)) \Rightarrow \neg \text{last}(w) = (s', \text{pass}(s, z))]]$$
Effect

• Suppose $s_1 \in S$ can execute $\text{pass}(s_2, z)$
• For all $w \in C^*$, $\text{cando}(w, s_1, \text{pass}(s_2, z))$ holds
• Initially, $\text{cando}(\nu, s_2, z)$ false
• Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)
 • So for each w_n with $\nu_n = (s_3, z')$, $\text{cando}(w_n, s_2, z) = \text{cando}(w_{n-1}, s_2, z)$
Effect

• Then policy says for all $s \in S$
 \[
 \text{proj}(s, ((s_2, z), (s_1, \text{pass}(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i) = \\
 \text{proj}(s, ((s_1, \text{pass}(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i)
 \]

• So s_2’s first execution of z does not affect any subject’s observation of system