ECS 235B Module 39
Policy Composition I
Policy Composition I

• Assumed: Output function of input
 • Means deterministic (else not function)
 • Means uninterruptability (differences in timings can cause differences in states, hence in outputs)

• This result for deterministic, noninterference-secure systems
Compose Systems

• Louie, Dewey LOW
• Hughie HIGH
• \(b_L\) output buffer
 • Anyone can read it
• \(b_H\) input buffer
 • From HIGH source
• Hughie reads from:
 • \(b_{LH}\) (Louie writes)
 • \(b_{LDH}\) (Louie, Dewey write)
 • \(b_{DH}\) (Dewey writes)
Systems Secure

• All noninterference-secure
 • Hughie has no output
 • So inputs don’t interfere with it
 • Louie, Dewey have no input
 • So (nonexistent) inputs don’t interfere with outputs
Security of Composition

• Buffers finite, sends/receives blocking: composition not secure!
 • Example: assume b_{DH}, b_{LH} have capacity 1

• Algorithm:
 1. Louie (Dewey) sends message to $b_{LH} (b_{DH})$
 – Fills buffer
 2. Louie (Dewey) sends second message to $b_{LH} (b_{DH})$
 3. Louie (Dewey) sends a 0 (1) to b_{L}
 4. Louie (Dewey) sends message to b_{LDH}
 – Signals Hughie that Louie (Dewey) completed a cycle
Hughie

• Reads bit from b_H
 • If 0, receive message from b_{LH}
 • If 1, receive message from b_{DH}

• Receive on b_{LDH}
 • To wait for buffer to be filled
Example

• Hughie reads 0 from b_H
 • Reads message from b_{LH}
• Now Louie’s second message goes into b_{LH}
 • Louie completes step 2 and writes 0 into b_L
• Dewey blocked at step 1
 • Dewey cannot write to b_L
• Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
• So, input from b_H copied to output b_L