
ECS 235B Module 46
Implementation Assurance 

Techniques

Module 46 ECS 235B, Foundations of Computer and Information Security 1



Implementation Considerations for Assurance

• Make system modular, with minimum of interfaces
• Interfaces are well-designed
• Remove any non-security functionality from them, whenever possible

• Choice of programming language can affect assurance
• Use one providing built-in features to avoid common flaws

• Strong typing, built-in checks for buffer overflow, data hiding, error handling, etc.
• Otherwise, develop and use appropriate coding standards and guidelines

• Useful, but limited support for good code 

Module 46 ECS 235B, Foundations of Computer and Information Security 2



Implementation Management

• Configuration management: control of changes made in system’s 
components, documentation, and testing throughout development, 
operational life
• Need processes, tools to do this effectively
• Configuration management system consists of:
• Version control and tracking
• Change authorization: restrict change check in to authorized people
• Integration procedures
• Product generation tools: generate the distribution version from authorized 

version

Module 46 ECS 235B, Foundations of Computer and Information Security 3



Justification

• Goal is to demonstrate implementation meets design
• Security testing
• Formal methods: used during coding processes, work best on small 

parts of a program performing well-defined tasks
• We’ll discuss these later (next chapter)

Module 46 ECS 235B, Foundations of Computer and Information Security 4



Testing

• Testing techniques
• Functional (black box): testing to see how well entity meets its specifications
• Structural (white box): testing based on analysis of code to develop test cases

• When to do testing
• Unit testing: testing by developer on code module before integration

• Usually structural testing
• System testing: functional testing performed by integration team on 

integrated modules
• May include structural testing

• Third-party (independent) testing: functional testing by a group outside 
development organization

Module 46 ECS 235B, Foundations of Computer and Information Security 5



Security Testing

• Testing that addresses product security
• Security functional testing: functional testing specific to security issues described in 

relevant specification
• Focus is on pathalogical cases, boundary value issues, and so forth

• Security structural testing: structural testing specific to security implementation 
found in relevant code

• Security requirements testing: security functional testing specific to security 
requirements found in requirements specification
• May overlap significantly with security functional testing

• Test coverage covers system security functions more consistently than 
ordinary testing
• When completed, provides rigorous argument that all external interfaces have been 

completely tested

Module 46 ECS 235B, Foundations of Computer and Information Security 6



Security Testing

• Usually takes place at external interface level
• Here, “interface” is point at which processing crosses security perimeter
• Users access system through these
• Therefore, violations of policy occur through these

• Parallel efforts, one by programming team, other by test team
• Security test suites ver large
• Automated test suites essential

Module 46 ECS 235B, Foundations of Computer and Information Security 7



Code Development and Testing

Module 46 ECS 235B, Foundations of Computer and Information Security

Code

Test unit on
current build

Integrate tested
test into auto-

mated test suite

Build test suite
Execute system
test on current

build

Code

Unit test

Integrate

Build system

Find
test
bugs

Find
code
bugs

8



Plans and Reports

• Configuration management, documentation very important
• Testers develop, document test plans, test specifications, test procedures, test 

results

• Writing test plans, specifications, procedures help authors examine, 
correct approaches
• Provides assurance about test methodology
• Enables analysis of test suite for correctness, completeness

• Reports identify which tests entity has passed, which it has failed
• Watch out for failures due to automation (where automated test fails, but 

same test run independently of suite passes)

Module 46 ECS 235B, Foundations of Computer and Information Security 9



Security Testing Using PGWG

• PAT(Process Action Team) Guidance Working Group developed 
systematic approach to test development using successive 
decomposition of system, requirements tracing
• Methodology works well in system defined into successively smaller 

components
• Requirements mapped to successively lower levels of design using test 

matrices
• At lowest level, test assertions claim interfaces meet each requirement
• Used to develop test cases
• Includes documentation approach

Module 46 ECS 235B, Foundations of Computer and Information Security 10



PGWG Test Matrices

• Two types of test matrices: high-level, low-level
• High level matrix

• Rows are entity subsystems, major components
• Columns are high-level security areas focused on functional requirements

• Like access controls, integrity controls, cryptography
• Cells give pointers to relevant documentation, lower-level test matrices

• Low level matrix
• Rows are interfaces to subsystem, component
• Columns represent security areas, their subdivisions, individual requirements
• Cells contain test assertions, each of which apply to single interface and requirement

• Any empty cells must be justified to show why requirement does not apply

Module 46 ECS 235B, Foundations of Computer and Information Security 11



Example: Testing Security-Enhanced UNIX

• System includes file, memory, process, and IPC management, process 
control, I/O interfaces and devices
• Security functional requirement areas
• Discretionary access control
• Privileges, identification, authentication (I&A)
• Object reuse protection
• Security audit
• System architecture constraints

• Testing uses interpretation of PGWG methodology
• High-level matrix
• Low-level matrices, 1 for each row of high-level matrix

Module 46 ECS 235B, Foundations of Computer and Information Security 12



Example: High-Level Matrix
Security Requirement Area

Component DAC Priv I&A OR Audit Arch
Process management ✓
Process control ✓ ✓ ✓ ✓ ✓
File management ✓ ✓ ✓ ✓ ✓
Audit subsystem ✓ ✓ ✓ ✓ ✓
I/O subsystem interfaces ✓ ✓ ✓ ✓ ✓
I/O device drivers ✓ ✓ ✓ ✓
IPC management ✓ ✓ ✓ ✓ ✓
Memory management ✓ ✓ ✓ ✓ ✓

Module 46 ECS 235B, Foundations of Computer and Information Security 13



Example: Low-Level Matrix
System 

Call
DAC 

u/g/o
DAC
ACL Priv I&A OR Security

Audit Logging Isolation Protection 
Domains

brk ✓ ✓ ✓
madvise ✓ ✓
mmap ✓ ✓ ✓ ✓ ✓ ✓ ✓
mprotect ✓ ✓ ✓ ✓ ✓
msync ✓ ✓
munmap ✓ ✓ ✓ ✓ ✓
plock ✓ ✓ ✓ ✓ ✓ ✓ ✓
vm-ctl ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Module 46 ECS 235B, Foundations of Computer and Information Security 14



Test Assertions

• Created by identifying security-relevant, testable, analyzable 
conditions
• Review design documentation for this

• PGWG methods for stating assertions
• Develop statements describing behavior that must be verified

• Example: “Verify that the calling process needs DAC write access permission to the 
parent directory of the file being created. Verify that if access is denied, the return error 
code is 2.”

• Develop statements that tester must prove or disprove with tests
• Example: “The calling process needs DAC write access permission to the parent directory 

of the file being created, and if access is denied, it returns error code 2.”
• State assertions as claims embedded within structured specification format

Module 46 ECS 235B, Foundations of Computer and Information Security 15



Test Specifications

• Test cases to verify truth of each assertion for each interface
• PGWG suggests:
• High-level test specifications (HLTS) describe, specify test cases for each 

interface
• Low-level test specifications (LLTS) provide information about each test case

• Like setup and cleanup conditions, other environmental conditions

Module 46 ECS 235B, Foundations of Computer and Information Security 16



Example: HLTS for Interface stime() 

Assertion 
Number

Requirement Area 
and Number Assertion Relevant 

Test Cases
1 PRIV AC_1 Verify that only root can use system 

call stime() successfully
Stime_1, 2

2 PRIV AC_2 Verify audit record generated for 
every failed stime() call

Stime_1, 2

3 PRIV AC_3 Verify audit record generated for 
every successful stime() call

Stime_1, 2

Module 46 ECS 235B, Foundations of Computer and Information Security

High-level test specification includes assertion, test case specifications

17



Test Case Specifications

• Describe specific tests required to meet assertions

Module 46 ECS 235B, Foundations of Computer and Information Security

Test Case Name
and Number

Is UserID
= root? Expected Results

Stime_1 Yes Call to stime() should succeed; audit record 
should be generated noting successful attempt 
and new clock time

Stime_2 No Call to stime() should fail; audit record should be 
generated noting failed attempt

18



LLTS for Stime_1

Test case name: K_MIS_stime_1
Test case description: Call stime as a non-root user to change system 
time; this should fail, verifying only root can use this call successfully
Expected result: stime call should fail with return value of –1, system 
clock should be unchanged, error number (errno) set to EPERM, audit 
record as shown below
Test specific setup:
1. Log in as a non-root user (secusr1)
2. Get the current system time

Module 46 ECS 235B, Foundations of Computer and Information Security 19



LLTS for Stime_1 (con’t)

Algorithm:
1. Do the setup as above
2. Call stime to change system time to 10 min ahead of current time
3. If return value is –1, error number is EPERM, and current system 

time not new time given to stime, declare the test passed; 
otherwise, declare failed

Cleanup: If system time has changed, reduce current time to 10 
minutes

Module 46 ECS 235B, Foundations of Computer and Information Security 20



LLTS for Stime_1 (con’t)

Audit record field values for failure (success):
Authid secusr1
RUID secusr1
EUID secusr1
RGID scgrp1
EGID secgrp1
Class tune
Reason Privilege failure (success)
Event SETTHETIME_1
Message Privilege failure (none)

Module 46 ECS 235B, Foundations of Computer and Information Security 21



Operation, Maintenance Assurance

• Bugs will be found during operation, requiring fixes
• Hot fix: handle bugs immediately, sent out as quickly as possible

• Used to fix bugs that immediately affect system security or operation
• Regular fix: handle less serious bugs or give long-term solutions to bugs fixed 

by hot fix, usually collected until some condition arises and then sent out
• Sent out as maintenance release or as “patch Tuesday” or some other way

• Well-defined procedures handle, track reported flaws
• Include information about bug, such as description, remedial actions, severity, 

pointer to related configuration management entries, other documentation
• Actions taken follow same security procedures used during original 

devlopment

Module 46 ECS 235B, Foundations of Computer and Information Security 22


