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Outline

• Random variables
• Joint probability
• Conditional probability
• Entropy (or uncertainty in bits)
• Joint entropy
• Conditional entropy
• Applying it to secrecy of ciphers
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Random Variable

• Variable that represents outcome of an event
• X represents value from roll of a fair die; probability for rolling n: p(X=n) = 1/6
• If die is loaded so 2 appears twice as often as other numbers, p(X=2) = 2/7 

and, for n ≠ 2,  p(X=n) = 1/7

• Note: p(X) means specific value for X doesn’t matter
• Example: all values of X are equiprobable
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Joint Probability

• Joint probability of X and Y, p(X, Y), is probability that X and Y
simultaneously assume particular values
• If X, Y independent, p(X, Y) = p(X)p(Y)

• Roll die, toss coin
• p(X=3, Y=heads) = p(X=3)p(Y=heads) = 1/6 ´ 1/2 = 1/12
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Two Dependent Events

• X = roll of red die, Y = sum of red, blue die rolls

• Formula:
p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108

• But if the red die (X) rolls 1, the most their sum (Y) can be is 7
• The problem is X and Y are dependent

p(Y=2) = 1/36 p(Y=3) = 2/36 p(Y=4) = 3/36 p(Y=5) = 4/36
p(Y=6) = 5/36 p(Y=7) = 6/36 p(Y=8) = 5/36 p(Y=9) = 4/36
p(Y=10) = 3/36 p(Y=11) = 2/36 p(Y=12) = 1/36
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Conditional Probability

• Conditional probability of X given Y, p(X | Y), is probability that X takes 
on a particular value given Y has a particular value
• Continuing example …
• p(Y=7 | X=1) = 1/6
• p(Y=7 | X=3) = 1/6
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Relationship

• p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)
• Example:

p(X=3,Y=8) = p(X=3|Y=8) p(Y=8) = (1/5)(5/36) = 1/36

• Note: if X, Y independent:
p(X|Y) = p(X)
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Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of 

uncertainty
• Therefore entropy of X is H(X) = 1

• Formal definition: random variable X, values x1, …, xn; so
Si p(X = xi) = 1; then entropy is:

H(X) = –Si p(X=xi) lg p(X=xi)

Module 47 ECS 235B, Foundations of Computer and Information Security 8



Heads or Tails?

• H(X) = – p(X=heads) lg p(X=heads) – p(X=tails) lg p(X=tails)
= – (1/2) lg (1/2) – (1/2) lg (1/2)
= – (1/2) (–1) – (1/2) (–1) = 1

• Confirms previous intuitive result 
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n-Sided Fair Die

H(X) = –Si p(X = xi) lg p(X = xi)
As p(X = xi) = 1/n, this becomes
H(X) = –Si (1/n) lg (1/ n) = –n(1/n) (–lg n)
so
H(X) = lg n
which is the number of bits in n, as expected
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Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?
• w1 = Ann, w2 = Pam, w3 = Paul
• p(W=w1) = p(W=w2) = 2/5, p(W=w3) = 1/5

• So H(W) = –Si p(W=wi) lg p(W=wi)
= – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)
= – (4/5) + lg 5 ≈ –1.52
• If all equally likely to win, H(W) = lg 3 ≈ 1.58
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Joint Entropy

• X takes values from { x1, …, xn }, and Si p(X=xi) = 1
• Y takes values from { y1, …, ym }, and Si p(Y=yi) = 1
• Joint entropy of X, Y is:

H(X, Y) = –Sj Si p(X=xi, Y=yj) lg p(X=xi, Y=yj)
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Example

X: roll of fair die, Y: flip of coin
As X, Y are independent:

p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12
and
H(X, Y) = –Sj Si p(X=xi, Y=yj) lg p(X=xi, Y=yj)

= –2 [ 6 [ (1/12) lg (1/12) ] ] = lg 12
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Conditional Entropy (Equivocation)

• X takes values from { x1, …, xn }  and Si p(X=xi) = 1
• Y takes values from { y1, …, ym } and Si p(Y=yi) = 1
• Conditional entropy of X given Y=yj is:

H(X | Y=yj) = –Si p(X=xi | Y=yj) lg p(X=xi | Y=yj)
• Conditional entropy of X given Y is:

H(X | Y) = –Sj p(Y=yj) Si p(X=xi | Y=yj) lg p(X=xi | Y=yj)
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Example

• X roll of red die, Y sum of red, blue roll
• Note p(X=1|Y=2) = 1, p(X=i|Y=2) = 0 for i ≠ 1
• If the sum of the rolls is 2, both dice were 1

• Thus
H(X|Y=2) = –Si p(X=xi|Y=2) lg p(X=xi|Y=2) = 0
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Example (con’t)

• Note p(X=i, Y=7) = 1/6
• If the sum of the rolls is 7, the red die can be any of 1, …, 6 and the blue die 

must be 7–roll of red die

• H(X|Y=7) = –Si p(X=xi|Y=7) lg p(X=xi|Y=7)
= –6 (1/6) lg (1/6) = lg 6
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Example: Perfect Secrecy

• Cryptography: knowing the ciphertext does not decrease the 
uncertainty of the plaintext
• M = { m1, …, mn } set of messages
• C = { c1, …, cn } set of messages
• Cipher ci = E(mi) achieves perfect secrecy if H(M | C) = H(M)
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