ECS 235B Module 48 Introduction to Information Flow

Basics

- Bell-LaPadula Model embodies information flow policy
 - Given compartments A, B, info can flow from A to B iff B dom A
- So does Biba Model
 - Given compartments A, B, info can flow from A to B iff A dom B
- Variables x, y assigned compartments <u>x</u>, <u>y</u> as well as values
 - Confidentiality (Bel-LaPadula): if <u>x</u> = A, <u>y</u> = B, and B dom A, then y := x allowed but not x := y
 - Integrity (Biba): if $\underline{x} = A$, $\underline{y} = B$, and A dom B, then x := y allowed but not y := x
- For now, focus on confidentiality (Bell-LaPadula)
 - We'll get to integrity later

Entropy and Information Flow

- Idea: information flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c
- Formally:
 - *s* time before execution of *c*, *t* time after
 - $H(x_s \mid y_t) < H(x_s \mid y_s)$
 - If no y at time s, then $H(x_s | y_t) < H(x_s)$

Example 1

- Command is *x* := *y* + *z*; where:
 - x does not exist initially (that is, has no value)
 - $0 \le y \le 7$, equal probability
 - z = 1 with probability 1/2, z = 2 or 3 with probability 1/4 each
- *s* state before command executed; *t*, after; so
 - $H(y_s) = H(y_t) = -8(1/8) \lg (1/8) = 3$
- You can show that $H(y_s | x_t) = (3/32) \lg 3 + 9/8 \approx 1.274 < 3 = H(y_s)$
 - Thus, information flows from y to x

Example 2

• Command is

where *x*, *y* equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s | y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa
 - Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from *x* to *y*

Implicit Flow of Information

- Information flows from x to y without an *explicit* assignment of the form y := f(x)
 - *f*(*x*) an arithmetic expression with variable *x*
- Example from previous slide:

```
if x = 1 then y := 0 else y := 1;
```

• So must look for implicit flows of information to analyze program

Notation

- <u>x</u> means class of x
 - In Bell-LaPadula based system, same as "label of security compartment to which x belongs"
- <u>x</u> ≤ <u>y</u> means "information can flow from an element in class of x to an element in class of y
 - Or, "information with a label placing it in class \underline{x} can flow into class \underline{y} "