ECS 235B Module 54 Analyzing Covert Channels

Analyzing Covert Channels

- Policy and operational issues determine how dangerous it is
 - What follows assumes a policy saying all covert channels are a problem
- Amount of information that can be transmitted affects how serious a problem a covert channel is
 - 1 bit per hour: probably harmless in most circumstances
 - 1,000,000 bits per second: probably dangerous in most circumstances
 - Begin here . . .

Measuring Capacity

- Intuitively, difference between unmodulated, modulated channel
 - Normal uncertainty in channel is 8 bits
 - Attacker modulates channel to send information, reducing uncertainty to 5 bits
 - Covert channel capacity is 3 bits
 - Modulation in effect fixes those bits

Formally

- Inputs:
 - A input from Alice (sender)
 - *V* input from everyone else
 - X output of channel
- Capacity measures uncertainty in X given A
- In other terms: maximize

$$I(A; X) = H(X) - H(X \mid A)$$

with respect to A

Noninterference and Covert Channels

- If A, V are independent and A noninterfering with X, then I(A; X) = 0
- Why? Intuition is that A and X are independent
 - If so, then only *V* affects *X* (noninterference)
 - So information from A cannot affect X unless A influences V
 - But A and V are independent, so information from A does not affect X
- But noninterference is not necessary

Example: Noninterference Not Necessary

- System has 1 bit of state; 3 inputs I_A , I_B , I_C ; one output O_X
- Each input flips state, and state's value is then output
 - System initially in state 0
- w sequence of inputs corresponding to output $x(w) = length(w) \mod 2$
 - I_A not noninterfering as deleting its inputs may change output
- Define terms
 - W random variable corresponding to length of input sequences
 - A random variable corresponding to length of input sequences contributed by I_A ; V random variable corresponding to other contributions; A, V independent
 - X random variable corresponding to output state

Two Cases

- V = 0; then as $W = (A + V) \mod 2$, W = A, and so A, W not independent; neither are A, X. So if V = 0, $I(A, X) \neq 0$
- I_B , I_C produce inputs such that p(V=0) = p(V=1) = 0.5; then

$$p(X=x) = p(V=x, A=0) + p(V=1-x, A=1)$$

Because A, V independent, this becomes

$$p(X=x) = p(V=x, A=0) + p(V=1-x)p(A=1)$$

and so p(X=x) = 0.5. Also,

$$p(X=x \mid A=a) = p(X = (a + x) \mod 2) = 0.5$$

establishing A, X independent; so I(A, X) = 0

Meaning

- Note A, X noninterfering, and I(A; X) = 0
- So covert channel capacity is 0 if either of the following hold:
 - Input is noninterfering with output; or
 - Input comes from independent sources, all possible values from at least one source are equally probable

Example (More Formally)

- If A, V independent, take p=p(A=0), q=p(V=0):
 - p(A=0,V=0) = pq
 - p(A=1,V=0) = (1-p)q
 - p(A=0,V=1) = p(1-q)
 - p(A=1,V=1) = (1-p)(1-q)
- So
 - p(X=0) = p(A=0, V=0) + p(A=1, V=1) = pq + (1-p)(1-q)
 - p(X=1) = p(A=0, V=1) + p(A=1, V=0) = (1-p)q + p(1-q)

Example (con't)

Also:

- p(X=0|A=0) = q
- p(X=0|A=1) = 1-q
- p(X=1|A=0) = 1-q
- p(X=1|A=1) = q
- So you can compute:
 - $H(X) = -[(1-p)q + p(1-q)] \lg [(1-p)q + p(1-q)]$
 - $H(X|A) = -q \lg q (1-q) \lg (1-q)$
 - I(A;X) = H(X)-H(X|A)

Example (con't)

• So
$$I(A; X) = -[pq + (1-p)(1-q)] \lg [pq + (1-p)(1-q)] -$$

$$[(1-p)q + p(1-q)] \lg [(1-p)q + p(1-q)] +$$

$$q \lg q + (1-q) \lg (1-q)$$

Maximum when p = 0.5; then

$$I(A;X) = 1 + q \lg q + (1-q) \lg (1-q) = 1-H(V)$$

- So, if q = 0 (meaning V is constant) then I(A;X) = 1
- Also, if q = p = 0.5, I(A;X) = 0

Analyzing Capacity

- Assume a noisy channel
- Examine covert channel in MLS database that uses replication to ensure availability
 - 2-phase commit protocol ensures atomicity
 - Coordinator process manages global execution
 - Participant processes do everything else

How It Works

- Coordinator sends message to each participant asking whether to abort or commit transaction
 - If any says "abort", coordinator stops
- Coordinator gathers replies
 - If all say "commit", sends commit messages back to participants
 - If any says "abort", sends abort messages back to participants
 - Each participant that sent commit waits for reply; on receipt, acts accordingly

Exceptions

- Protocol times out, causing party to act as if transaction aborted, when:
 - Coordinator doesn't receive reply from participant
 - Participant who sends a commit doesn't receive reply from coordinator

Covert Channel Here

- Two types of components
 - One at Low security level, other at High
- Low component begins 2-phase commit
 - Both High, Low components must cooperate in the 2-phase commit protocol
- High sends information to Low by selectively aborting transactions
 - Can send abort messages
 - Can just not do anything

Note

- If transaction *always* succeeded except when *High* component sending information, channel not noisy
 - Capacity would be 1 bit per trial
 - But channel noisy as transactions may abort for reasons *other* than the sending of information

Analysis

- X random variable: what High user wants to send
 - Assume abort is 1, commit is 0
 - p = p(X=0) probability *High* sends 0
- A random variable: what Low receives
 - For noiseless channel X = A
- *n*+2 users
 - Sender, receiver, n others that act independently of one another
 - q probability of transaction aborting at any of these n users

Basic Probabilities

- Probabilities of receiving given sending
 - $p(A=0|X=0) = (1-q)^n$
 - $p(A=1|X=0) = 1-(1-q)^n$
 - p(A=0|X=1)=0
 - p(A=1|X=1)=1
- So probabilities of receiving values:
 - $p(A=0) = p(1-q)^n$
 - $p(A=1) = 1-p(1-q)^n$

More Probabilities

- Given sending, what is receiving?
 - p(X=0|A=0) = 1
 - p(X=1|A=0) = 0
 - $p(X=0|A=1) = p[1-(1-q)^n] / [1-p(1-q)^n]$
 - $p(X=1|A=1) = (1-p) / [1-p(1-q)^n]$

Entropies

You can compute these:

- $H(X) = -p \lg p (1-p) \lg (1-p)$
- $H(X|A) = -p[1-(1-q)^n] \lg p p[1-(1-q)^n] \lg [1-(1-q)^n] +$ $[1-p(1-q)^n] \lg [1-p(1-q)^n] (1-p) \lg (1-p)$
- $I(A;X) = -p(1-q)^n \lg p + p[1-(1-q)^n] \lg [1-(1-q)^n] [1-p(1-q)^n] \lg [1-p(1-q)^n]$

Capacity

- Maximize this with respect to p (probability that High sends 0)
 - Notation: $m = (1-q)^n$, $M = (1-m)^{(1-m)}$
 - Maximum when $p = M^{(1/m)} / (M^{(1/m)}m+1)$
- Capacity is:

$$I(A;X) = Mm \lg p + M(1-m) \lg (1-m) + \lg (Mm+1)$$

$$(Mm+1)$$