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Mitigation of Covert Channels

• Problem: these work by varying use of shared resources
• One solution
• Require processes to say what resources they need before running
• Provide access to them in a way that no other process can access them

• Cumbersome
• Includes running (CPU covert channel)
• Resources stay allocated for lifetime of process
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Alternate Approach

• Obscure amount of resources being used
• Receiver cannot distinguish between what the sender is using and what is 

added

• How? Two ways:
• Devote uniform resources to each process
• Inject randomness into allocation, use of resources
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Uniformity

• Variation of isolation
• Process can’t tell if second process using resource

• Example: KVM/370 covert channel via CPU usage
• Give each VM a time slice of fixed duration
• Do not allow VM to surrender its CPU time

• Can no longer send 0 or 1 by modulating CPU usage
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Randomness

• Make noise dominate channel
• Does not close it, but makes it useless

• Example: MLS database
• Probability of transaction being aborted by user other than sender, receiver 

approaches 1
• q® 1

• I(A; X) ® 0
• How to do this: resolve conflicts by aborting increases q, or have participants 

abort transactions randomly
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Problem: Loss of Efficiency

• Fixed allocation, constraining use
• Wastes resources

• Increasing probability of aborts
• Some transactions that will normally commit now fail, requiring more retries

• Policy: is the inefficiency preferable to the covert channel?
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Example

• Goal: limit covert timing channels on VAX/VMM
• “Fuzzy time” reduces accuracy of system clocks by generating random 

clock ticks
• Random interrupts take any desired distribution
• System clock updates only after each timer interrupt
• Kernel rounds time to nearest 0.1 sec before giving it to VM

• Means it cannot be more accurate than timing of interrupts
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Example

• I/O operations have random delays
• Kernel distinguishes 2 kinds of time:
• Event time (when I/O event occurs)
• Notification time (when VM told I/O event occurred)

• Random delay between these prevents VM from figuring out when event actually 
occurred)

• Delay can be randomly distributed as desired (in security kernel, it’s 1–19ms)
• Added enough noise to make covert timing channels hard to exploit
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Improvement

• Modify scheduler to run processes in increasing order of security level
• Now we’re worried about “reads up”, so …

• Countermeasures needed only when transition from dominating VM 
to dominated VM
• Add random intervals between quanta for these transitions
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The Pump

• Tool for controlling communications path between High and Low
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Details

• Communications buffer of length n
• Means it can hold up to n messages

• Messages numbered
• Pump ACKs each message as it is moved from High (Low) buffer to 

communications buffer
• If pump crashes, communications buffer preserves messages
• Processes using pump can recover from crash
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Covert Channel

• Low fills communications buffer
• Send messages to pump until no ACK
• If High wants to send 1, it accepts 1 message from pump; if High wants to 

send 0, it does not
• If Low gets ACK, message moved from Low buffer to communications 

buffer Þ High sent 1
• If Low doesn’t get ACK, no message moved Þ High sent 0

• Meaning: if High can control rate at which pump passes messages to 
it, a covert timing channel
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Performance vs. Capacity

• Assume Low process, pump can process messages more quickly than 
High process
• Li random variable: time from Low sending message to pump to Low

receiving ACK
• Hi random variable: average time for High to ACK each of last n

messages
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Case1: E(Li) > Hi

• High can process messages more quickly than Low can get ACKs
• Contradicts above assumption
• Pump must be delaying ACKs
• Low waits for ACK whether or not communications buffer is full

• Covert channel closed
• Not optimal
• Process may wait to send message even when there is room
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Case 2: E(Li) < Hi

• Low sending messages faster than High can remove them
• Covert channel open
• Optimal performance
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Case 3: E(Li) = Hi

• Pump, processes handle messages at same rate
• Covert channel open
• Bandwidth decreased from optimal case (can’t send messages over covert 

channel as fast)

• Performance not optimal
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Adding Noise

• Shown: adding noise to approximate case 3
• Covert channel capacity reduced to 1/nr where r time from Low sending 

message to pump to Low receiving ACK when communications buffer not full
• Conclusion: use of pump substantially reduces capacity of covert channel 

between High, Low processes when compared to direct connection
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