
ECS 235B Module 55
Mitigating Covert Channels

Module 55 ECS 235B, Foundations of Computer and Information Security 1



Mitigation of Covert Channels

• Problem: these work by varying use of shared resources
• One solution
• Require processes to say what resources they need before running
• Provide access to them in a way that no other process can access them

• Cumbersome
• Includes running (CPU covert channel)
• Resources stay allocated for lifetime of process

Module 55 ECS 235B, Foundations of Computer and Information Security 2



Alternate Approach

• Obscure amount of resources being used
• Receiver cannot distinguish between what the sender is using and what is 

added

• How? Two ways:
• Devote uniform resources to each process
• Inject randomness into allocation, use of resources

Module 55 ECS 235B, Foundations of Computer and Information Security 3



Uniformity

• Variation of isolation
• Process can’t tell if second process using resource

• Example: KVM/370 covert channel via CPU usage
• Give each VM a time slice of fixed duration
• Do not allow VM to surrender its CPU time

• Can no longer send 0 or 1 by modulating CPU usage

Module 55 ECS 235B, Foundations of Computer and Information Security 4



Randomness

• Make noise dominate channel
• Does not close it, but makes it useless

• Example: MLS database
• Probability of transaction being aborted by user other than sender, receiver 

approaches 1
• q® 1

• I(A; X) ® 0
• How to do this: resolve conflicts by aborting increases q, or have participants 

abort transactions randomly

Module 55 ECS 235B, Foundations of Computer and Information Security 5



Problem: Loss of Efficiency

• Fixed allocation, constraining use
• Wastes resources

• Increasing probability of aborts
• Some transactions that will normally commit now fail, requiring more retries

• Policy: is the inefficiency preferable to the covert channel?

Module 55 ECS 235B, Foundations of Computer and Information Security 6



Example

• Goal: limit covert timing channels on VAX/VMM
• “Fuzzy time” reduces accuracy of system clocks by generating random 

clock ticks
• Random interrupts take any desired distribution
• System clock updates only after each timer interrupt
• Kernel rounds time to nearest 0.1 sec before giving it to VM

• Means it cannot be more accurate than timing of interrupts

Module 55 ECS 235B, Foundations of Computer and Information Security 7



Example

• I/O operations have random delays
• Kernel distinguishes 2 kinds of time:
• Event time (when I/O event occurs)
• Notification time (when VM told I/O event occurred)

• Random delay between these prevents VM from figuring out when event actually 
occurred)

• Delay can be randomly distributed as desired (in security kernel, it’s 1–19ms)
• Added enough noise to make covert timing channels hard to exploit

Module 55 ECS 235B, Foundations of Computer and Information Security 8



Improvement

• Modify scheduler to run processes in increasing order of security level
• Now we’re worried about “reads up”, so …

• Countermeasures needed only when transition from dominating VM 
to dominated VM
• Add random intervals between quanta for these transitions

Module 55 ECS 235B, Foundations of Computer and Information Security 9



The Pump

• Tool for controlling communications path between High and Low

Module 55 ECS 235B, Foundations of Computer and Information 
Security

communications buffer

Low buffer High buffer

Low process High process

Slide 18-10



Details

• Communications buffer of length n
• Means it can hold up to n messages

• Messages numbered
• Pump ACKs each message as it is moved from High (Low) buffer to 

communications buffer
• If pump crashes, communications buffer preserves messages
• Processes using pump can recover from crash

Module 55 ECS 235B, Foundations of Computer and Information Security 11



Covert Channel

• Low fills communications buffer
• Send messages to pump until no ACK
• If High wants to send 1, it accepts 1 message from pump; if High wants to 

send 0, it does not
• If Low gets ACK, message moved from Low buffer to communications 

buffer Þ High sent 1
• If Low doesn’t get ACK, no message moved Þ High sent 0

• Meaning: if High can control rate at which pump passes messages to 
it, a covert timing channel

Module 55 ECS 235B, Foundations of Computer and Information Security 12



Performance vs. Capacity

• Assume Low process, pump can process messages more quickly than 
High process
• Li random variable: time from Low sending message to pump to Low

receiving ACK
• Hi random variable: average time for High to ACK each of last n

messages

Module 55 ECS 235B, Foundations of Computer and Information Security 13



Case1: E(Li) > Hi

• High can process messages more quickly than Low can get ACKs
• Contradicts above assumption
• Pump must be delaying ACKs
• Low waits for ACK whether or not communications buffer is full

• Covert channel closed
• Not optimal
• Process may wait to send message even when there is room

Module 55 ECS 235B, Foundations of Computer and Information Security 14



Case 2: E(Li) < Hi

• Low sending messages faster than High can remove them
• Covert channel open
• Optimal performance

Module 55 ECS 235B, Foundations of Computer and Information Security 15



Case 3: E(Li) = Hi

• Pump, processes handle messages at same rate
• Covert channel open
• Bandwidth decreased from optimal case (can’t send messages over covert 

channel as fast)

• Performance not optimal

Module 55 ECS 235B, Foundations of Computer and Information Security 16



Adding Noise

• Shown: adding noise to approximate case 3
• Covert channel capacity reduced to 1/nr where r time from Low sending 

message to pump to Low receiving ACK when communications buffer not full
• Conclusion: use of pump substantially reduces capacity of covert channel 

between High, Low processes when compared to direct connection

Module 55 ECS 235B, Foundations of Computer and Information Security 17


