
ECS 235B Module 57
Program Security

Module 57 ECS 235B, Foundations of Computer and Information Security 1

Program Security Components

• Introduction
• Requirements and Policy
• Design
• Refinement and Implementation
• Common Security-Related Programming Problems
• Testing, Maintenance, and Operation
• Distribution

Module 57 ECS 235B, Foundations of Computer and Information Security 2

Program Security Components

• Introduction
• Requirements and Policy
• Design
• Refinement and Implementation
• Common Security-Related Programming Problems
• Testing, Maintenance, and Operation
• Distribution

Module 57 ECS 235B, Foundations of Computer and Information Security

We will look at these

3

Program Security Components

• Introduction
• Requirements and Policy
• Design
• Refinement and Implementation
• Common Security-Related Programming Problems
• Testing, Maintenance, and Operation
• Distribution

Module 57 ECS 235B, Foundations of Computer and Information Security

We will look at these

And not these

4

Introduction

• Goal: implement program that:
• Verifies user’s identity
• Determines if change of account allowed
• If so, places user in desired role

• Similar to su(1) for UNIX and Linux systems
• User supplies his/her password, not target account’s
• Like sudo(1) but offers different constraints

Module 57 ECS 235B, Foundations of Computer and Information Security 5

Why?

• Eliminate password sharing problem
• Role accounts under Linux are user accounts
• If two or more people need access, both need role account’s password

• Program solves this problem
• Runs with root privileges
• User supplies his/her password to authenticate
• If access allowed, program spawns command interpreter with privileges of

role account

Module 57 ECS 235B, Foundations of Computer and Information Security 6

Requirements

1. Access to role account based on user, location, time of request
2. Settings of role account’s environment replaces corresponding

settings of user’s environment, but rest of user’s environment
preserved

3. Only root can alter access control information for access to role
account

Module 57 ECS 235B, Foundations of Computer and Information Security 7

More Requirements

4. Mechanism provides restricted, unrestricted access to role account
• Restricted: run only specified commands
• Unrestricted: access command interpreter

5. Access to files, directories, objects owned by role account
restricted to those authorized to use role account, users trusted to
install system programs, root

Module 57 ECS 235B, Foundations of Computer and Information Security 8

Threats

• Group 1: Unauthorized user (UU) accessing role accounts
1. UU accesses role account as though authorized user
2. Authorized user uses nonsecure channel to obtain access to role account,

thereby revealing authentication information to UU
3. UU alters access control information to gain access to role account
4. Authorized user executes Trojan horse giving UU access to role account

Module 57 ECS 235B, Foundations of Computer and Information Security 9

Relationships

threat requirement notes
1 1, 5 Restricts who can access role

account, protects access control data

2 1 Restricts location from where user
can access role account

3 3 Restricts change to trusted users

4 2, 4, 5 User’s search path restricted to own
or role account; only trusted users,
role account can manipulate
executables

Module 57 ECS 235B, Foundations of Computer and Information
Security

10

More Threats

• Group 2: Authorized user (AU) accessing role accounts
5. AU obtains access to role account, performs unauthorized commands
6. AU executes command that performs functions that user not authorized to

perform
7. AU changes restrictions on user’s ability to obtain access to role account

Module 57 ECS 235B, Foundations of Computer and Information Security 11

Relationships

threat requirement notes
5 4 Allows user restricted access to role

account, so user can run only specific
commands

6 2, 5 Prevent introduction of Trojan horse

7 3 root users trusted; users with access
to role account trusted

Module 57 ECS 235B, Foundations of Computer and Information
Security

12

Design

• Framework for hooking modules together
• User interface
• High-level design

• Controlling access to roles and commands
• Interface
• Internals
• Storage of access control data

Module 57 ECS 235B, Foundations of Computer and Information Security 13

User Interface

• User wants unrestricted access or to run a specific command
(restricted access)
• Assume command line interface
• Can add GUI, etc. as needed

• Command
role role_account [command]

where
• role_account name of role account
• command command to be run (optional)

Module 57 ECS 235B, Foundations of Computer and Information Security 14

High-Level Design

1.Obtain role account, command, user, location, time of day
• If command omitted, assume command interpreter (unrestricted access)

2.Check user allowed to access role account
a) at specified location;
b) at specified time; and
c) for specified command (or without restriction)

If user not, log attempt and quit

Module 57 ECS 235B, Foundations of Computer and Information Security 15

High-Level Design (con’t)

3. Obtain user, group information for role account; change privileges
of process to role account

4. If user requested specific command, overlay process with
command interpreter that spawns named command

5. If user requested unrestricted access, overlay process with
command interpreter allowing interactive use

Module 57 ECS 235B, Foundations of Computer and Information Security 16

Ambiguity in Requirements

• Requirements 1, 4 do not say whether command selection restricted
by time, location
• This design assumes it is

• Backups may need to be run at 1AM and only 1AM
• Alternate: assume restricted only by user, role; equally reasonable

• Update requirement 4 to be: Mechanism provides restricted, unrestricted
access to role account
• Restricted: run only specified commands
• Unrestricted: access command interpreter

Level of access (restricted, unrestricted) depends on user, role, time, location

Module 57 ECS 235B, Foundations of Computer and Information Security 17

Access to Roles, Commands

• Module determines whether access to be allowed
• If it can’t get user, role, location, and/or time, error; return failure

• Interface: controls how info passed between module, caller
• Internal structure: how does module handle errors, access control

data structures

Module 57 ECS 235B, Foundations of Computer and Information Security 18

Interface to Module

• Minimize amount of information being passed through interface
• Follow standard ideas of information hiding
• Module can get user, time of day, location from system
• So, need pass only command (if any), role account name

• boolean accessok(role rname, command cmd)

• rname: name of role
• cmd: command (empty if unrestricted access desired)
• returns true if access granted, false if not (or error)

Module 57 ECS 235B, Foundations of Computer and Information Security 19

Internals of Module

• Part 1: gather data to determine if access allowed
• Part 2: retrieve access control information from storage
• Part 3: compare two, determine if access allowed

Module 57 ECS 235B, Foundations of Computer and Information Security 20

Part 1

• Required:
• user ID: who is trying to access role account
• time of day: when is access being attempted

• From system call to operating system
• entry point: terminal or network connection
• remote host: name of host from which user accessing local system (empty if

on local system)
• These make up location

Module 57 ECS 235B, Foundations of Computer and Information Security 21

Part 2

• Obtain handle for access control file
• May be called a “descriptor”

• Contents of file is sequence of records:
role account
user names

locations from which the role account can be accessed
times when the role account can be accessed
command and arguments

• Can list multiple commands, arguments in 1 record
• If no commands listed, unrestricted access

Module 57 ECS 235B, Foundations of Computer and Information Security 22

Part 3

• Iterate through access control file
• Retrieve next record
• If no more records

• Release handle
• Return failure

• Check role
• If not a match, skip record (go back to top)

• Check user name, location, time, command
• If any does not match, skip record and go to top

• Release handle
• Return success

Module 57 ECS 235B, Foundations of Computer and Information Security 23

Storing Access Control Data

• Sequence of records; what should contents of fields be?
• Location: *any*, *local*, host, domain; operators not, or (‘,’)

local , control.fixit.com , .watchu.edu

• User: *any*, user name; operators not, or (‘,’)
peter , paul , mary , joan , janis

• Time: *any*, time range
Monday-Thursday 9a.m.-5p.m.

Module 57 ECS 235B, Foundations of Computer and Information Security 24

Time Representation

• Use ranges expressed (reasonably) normally
Mon-Thu 9AM-5PM
• Any time between 9AM and 5PM on Mon, Tue, Wed, or Thu
Mon 9AM-Thu 5PM
• Any time between 9AM Monday and 5PM Thursday
Apr 15 8AM-Sep 15 6PM
• Any time from 8AM on April 15 to 6PM on September 15, on any year

Module 57 ECS 235B, Foundations of Computer and Information Security 25

Commands

• Command plus arguments shown
/bin/install *
• Execute /bin/install with any arguments
/bin/cp log /var/inst/log
• Copy file log to /var/inst/log
/usr/bin/id
• Run program id with no arguments

• User need not supply path names, but commands used must be the
ones with those path names

Module 57 ECS 235B, Foundations of Computer and Information Security 26

Refinement and Implementation

• First-level refinement
• Second-level refinement
• Functions
• Obtaining location
• Obtaining access control record
• Error handling in reading, matching routines

Module 57 ECS 235B, Foundations of Computer and Information Security 27

First-Level Refinement

• Use pseudocode:
boolean accessok(role rname, command cmd);

stat ¬ false
user ¬ obtain user ID

timeday ¬ obtain time of day
entry ¬ obtain entry point (terminal line, remote host)
open access control file

repeat
rec ¬ get next record from file; EOF if none
if rec ≠ EOF then

stat ¬ match(rec, rname, cmd, user, timeday, entry)
until rec = EOF or stat = true

close access control file
return stat

Module 57 ECS 235B, Foundations of Computer and Information Security 28

Check Sketch

• Interface right
• Stat (holds status of access control check) false until match made,

then true
• Get user, time of day, location (entry)
• Iterates through access control records
• Get next record
• If there was one, sets stat to result of match
• Drops out when stat true or no more records

• Close file, releasing handle
• Return stat

Module 57 ECS 235B, Foundations of Computer and Information Security 29

Second-Level Refinement

• Map pseudocode to particular language, system
• We’ll use C, Linux (UNIX-like system)
• Role accounts same as user accounts

• Interface decisions
• User, role ID representation
• Commands and arguments
• Result

Module 57 ECS 235B, Foundations of Computer and Information Security 30

Users and Roles

• May be name (string) or uid_t (integer)
• In access control file, either representation okay

• If bogus name, can’t be mapped to uid_t
• Kernel works with uid_t
• So access control part needs to do conversion to uid_t at some point

• Decision: represent all user, role IDs as uid_t
• Note: no design decision relied upon representation of user, role

accounts, so no need to revisit any

Module 57 ECS 235B, Foundations of Computer and Information Security 31

Commands, Arguments, Result

• Command is program name (string)
• Argument is sequence of words (array of string pointers)
• Result is boolean (integer)

Module 57 ECS 235B, Foundations of Computer and Information Security 32

Resulting Interface

int accessok(uid_t rname, char *cmd[]);

Module 57 ECS 235B, Foundations of Computer and Information Security 33

Second-Level Refinement

• Obtaining user ID
• Obtaining time of day
• Obtaining location
• Opening access control file
• Processing records
• Cleaning up

Module 57 ECS 235B, Foundations of Computer and Information Security 34

Obtaining User ID

• Which identity?
• Effective ID: identifies privileges of process

• Must be 0 (root), so not this one
• Real ID: identifies user running process

userid = getuid();

Module 57 ECS 235B, Foundations of Computer and Information Security 35

Obtain Time of Day

• Internal representation is seconds since epoch
• On Linux, epoch is Jan 1, 1970 00:00:00

timeday = time(NULL);

Module 57 ECS 235B, Foundations of Computer and Information Security 36

Obtaining Location

• System dependent
• So we defer, encapsulating it in a function to be written later

entry = getlocation();

Module 57 ECS 235B, Foundations of Computer and Information Security 37

Opening Access Control File

• Note error checking and logging

if ((fp = fopen(acfile, “r”)) == NULL){
logerror(errno, acfile);
return(stat);

}

Module 57 ECS 235B, Foundations of Computer and Information Security 38

Processing Records

• Internal record format not yet decided
• Note use of functions to delay deciding this
do {

acrec = getnextacrec(fp);
if (acrec != NULL)

stat = match(rec, rname, cmd, user,
timeday, entry);

} until (acrec == NULL || stat == 1);

Module 57 ECS 235B, Foundations of Computer and Information Security 39

Cleaning Up

• Release handle by closing file

(void) fclose(fp);
return(stat);

Module 57 ECS 235B, Foundations of Computer and Information Security 40

Getting Location

• On login, Linux writes user name, terminal name, time, and name of
remote host (if any) in file utmp
• Every process may have associated terminal
• To get location information:
• Obtain associated process terminal name
• Open utmp file
• Find record for that terminal
• Get associated remote host from that record

Module 57 ECS 235B, Foundations of Computer and Information Security 41

Security Problems

• If any untrusted process can alter utmp file, contents cannot be
trusted
• Several security holes came from this

• Process may have no associated terminal
• Design decision: if either is true, return meaningless location
• Unless location in access control file is any wildcard, fails

Module 57 ECS 235B, Foundations of Computer and Information Security 42

getlocation() Outline
hostname getlocation()

myterm ¬ name of terminal associated with process

obtain utmp file access control list

if any user other than root can alter it then

return “*nowhere*”

open utmp file

repeat

term ¬ get next record from utmp file; EOF if none

if term ≠ EOF and myterm = term then stat ¬ true

else stat ¬ false

until term = EOF or stat = true

if host field in utmp record = empty then

host ¬ “localhost”

else host ¬ host field of utmp record

close utmp file

return host

Module 57 ECS 235B, Foundations of Computer and Information Security 43

Access Control Record

• Consider match routine
• User name is uid_t (integer) internally

• Easiest: require user name to be uid_t in file
• Problems: (1) human-unfriendly; (2) unless binary data recorded, still need to convert
• Decision: in file, user names are strings (names or string of digits representing integer)

• Location, set of commands strings internally
• Decision: in file, represent them as strings

Module 57 ECS 235B, Foundations of Computer and Information Security 44

Time Representation

• Here, time is an interval
• May 30 means “any time on May 30”, or “May 30 12AM-May 31 12AM

• Current time is integer internally
• Easiest: require time interval to be two integers
• Problems: (1) human-unfriendly; (2) unless binary data recorded, still need to

convert
• Decision: in file, time interval represented as string

Module 57 ECS 235B, Foundations of Computer and Information Security 45

Record Format

• Here, commands is repeated once per command, and numcommands
is number of commands fields
record
role rname
string userlist
string location
string timeofday
string commands[]
…
string commands[]
integer numcommands

end record;

• May be able to compute numcommands from record

Module 57 ECS 235B, Foundations of Computer and Information Security 46

Error Handling

• Suppose syntax error or garbled record
• Error cannot be ignored
• Log it so system administrator can see it

• Include access control file name, line or record number
• Notify user, or tell user why there is an error, different question

• Can just say “access denied”
• If error message, need to give access control file name, line number

• Suggests error, log routines part of accessok module

Module 57 ECS 235B, Foundations of Computer and Information Security 47

Key Points

• Security in programming best done by mimicing high assurance
techniques
• Begin with requirements analysis and validation
• Map requirements to design
• Map design to implementation
• Watch out for common vulnerabilities

• Test thoroughly
• Distribute carefully

Module 57 ECS 235B, Foundations of Computer and Information Security 48

