Prove or give a counterexample:
The predicate $can\cdot share(\alpha, x, y, G_0)$ is true if and only if there is an edge from x to y in G_0 labeled α, or if the following hold simultaneously.

(a) There is a vertex s with an s-to-y edge labeled α.

(b) There is a subject vertex x' such that $x' = x$ or x' initially spans to x.

(c) There is a subject vertex s' such that $s' = s$ or s' terminally spans to s.

(d) There is a sequence of subjects x_1, \ldots, x_n with $x_1 = x'$, $x_n = s'$, and x_i and x_{i+1} ($1 \leq i < n$) being connected by an edge labeled t, an edge labeled g, or a bridge.