January 12, 2024 Outline

Reading: *text*, §3.3–3.4 **Assignments:** Homework #1, due January 19; Project selection, due January 26

Module 7 (Reading: *text*, §3.3)

- 1. Take-Grant Protection Model
 - (a) Counterpoint to HRU result
 - (b) Symmetry of take and grant rights
 - (c) Islands (maximal subject-only *tg*-connected subgraphs)
 - (d) Bridges (as a combination of terminal and initial spans)

Module 8 (Reading: text, §3.3.2–3.3.2)

- 2. Sharing
 - (a) Definition: $can \cdot share(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ true iff there exists a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n , there is an edge from \mathbf{x} to \mathbf{y} labeled α
 - (b) Theorem: $can \cdot share(\alpha;, \mathbf{x}, \mathbf{y}, G_0)$ iff there is an edge from \mathbf{x} to \mathbf{y} labeled α ; in G_0 , or all of the following hold:
 - i. there is a vertex \mathbf{y}' with an edge from \mathbf{y}' to \mathbf{y} labeled α ;;
 - ii. there is a subject \mathbf{y}'' which terminally spans to \mathbf{y}' , or $\mathbf{y}'' = \mathbf{y}'$;
 - iii. there is a subject \mathbf{x}' which initially spans to \mathbf{x} , or $\mathbf{x}' = \mathbf{x}$; and
 - iv. there is a sequence of islands I_1, \ldots, I_n connected by bridges for which $\mathbf{x}' \in I_1$ and $\mathbf{y}' \in I_n$.
- 3. Model Interpretation
 - (a) ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 - (b) Example: shared buffer managed by trusted third party

Module 9 (Reading: *text*, §3.3.3–3.3.4)

- 4. *can*•*steal*(α ;, **x**, **y**, *G*₀) definition and theorem
 - (a) Definition: $can \cdot steal(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ true iff there is no edge labeled α from \mathbf{x} to \mathbf{y} in G_0 and there exists a sequence of protection graphs G_0, \ldots, G_n such that the following hold simultaneously:
 - i. there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_n ;
 - ii. there is a sequence of rule applications ρ_1, \ldots, ρ_n such that $G_{i-1} \vdash^* G_n$ using ρ_i ; and
 - iii. for all vertices **v** and **w** in G_{i-1} , $1 \le i < n$, if there is an edge from **v** to **y** in G_0 labeled α , then ρ_i is *not* of the form "**v** grants (α to **y**) to **w**".
 - (b) Theorem: $can \cdot steal(\alpha, \mathbf{x}, \mathbf{y}, G_0)$ iff all of the following hold:
 - i. there is an edge from \mathbf{x} to \mathbf{y} labeled r in G_n ;
 - ii. there is a subject vertex \mathbf{x}' such that $\mathbf{x}' = \mathbf{x}$ or \mathbf{x}' initially spans to \mathbf{x} ; and
 - iii. there is a vertex **s** with an edge labeled α to **y** in G_0 and for which *can•share*(*t*, **x**, **s**, G_0) holds.
- 5. Conspiracy
 - (a) What is of interest?
 - (b) Access, deletion sets
 - (c) Conspiracy graph
 - (d) Number of conspirators

Module 10 (Reading: *text*, §3.4)

6. Schematic Protection Model

- (a) Protection type, ticket, function, link predicate, filter function
- (b) Take-Grant as an instance of SPM