January 12, 2024 Outline

Reading: *text*, §3.3–3.4

Assignments: Homework #1, due January 19; Project selection, due January 26

Module 7 (Reading: text, §3.3)

1. Take-Grant Protection Model
 (a) Counterpoint to HRU result
 (b) Symmetry of take and grant rights
 (c) Islands (maximal subject-only tg-connected subgraphs)
 (d) Bridges (as a combination of terminal and initial spans)

Module 8 (Reading: text, §3.3.2–3.3.2)

2. Sharing
 (a) Definition: $can \cdot share(\alpha, x, y, G_0)$ true iff there exists a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ using only take, grant, create, remove rules and in G_n, there is an edge from x to y labeled α
 (b) Theorem: $can \cdot share(\alpha, x, y, G_0)$ iff there is an edge from x to y labeled α in G_0, or all of the following hold:
 i. there is a vertex y' with an edge from y' to y labeled α;
 ii. there is a subject y'' which terminally spans to y', or $y'' = y'$;
 iii. there is a subject x' which initially spans to x, or $x' = x$; and
 iv. there is a sequence of islands I_1, \ldots, I_n connected by bridges for which $x' \in I_1$ and $y' \in I_n$.

3. Model Interpretation
 (a) ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 (b) Example: shared buffer managed by trusted third party

Module 9 (Reading: text, §3.3.3–3.3.4)

4. $can \cdot steal(\alpha, x, y, G_0)$ definition and theorem
 (a) Definition: $can \cdot steal(\alpha, x, y, G_0)$ true iff there is no edge labeled α from x to y in G_0 and there exists a sequence of protection graphs G_0, \ldots, G_n such that the following hold simultaneously:
 i. there is an edge from x to y labeled r in G_n;
 ii. there is a sequence of rule applications ρ_1, \ldots, ρ_n such that $G_{i-1} \vdash^* G_n$ using ρ_i; and
 iii. for all vertices v and w in G_{i-1}, $1 \leq i < n$, if there is an edge from v to y in G_0 labeled α, then ρ_i is not of the form "v grants (α to y) to w".
 (b) Theorem: $can \cdot steal(\alpha, x, y, G_0)$ iff all of the following hold:
 i. there is an edge from x to y labeled r in G_n;
 ii. there is a subject vertex x' such that $x' = x$ or x' initially spans to x; and
 iii. there is a vertex s with an edge labeled α to y in G_0 and for which $can \cdot share(t, x, s, G_0)$ holds.

5. Conspiracy
 (a) What is of interest?
 (b) Access, deletion sets
 (c) Conspiracy graph
 (d) Number of conspirators

Module 10 (Reading: text, §3.4)

6. Schematic Protection Model
(a) Protection type, ticket, function, link predicate, filter function
(b) Take-Grant as an instance of SPM