ECS 235B Module 5
Attribute-Based Access Control Matrix
Attributes

• *attribute*: variable of a specific data type associated with an entity
• *att*(o): set of attribute values associated with o, called the *attribute value tuple* of o
 • Each attribute is written *o.a*_i, with value v drawn from set *Va*_i
• *attribute predicate*: boolean expression built from attributes and constants with appropriate operation and relation symbols
 • Unary predicate: built from one attribute
 • Binary predicate: built from two attributes
 • Can have as many attributes in a predicate as needed
 • Example: *Alice.credit* ≥ $100.00
Attribute Based Access Control Matrix (ABAM)

- Change access control matrix so rows correspond to subjects and their attributes, and columns correspond to objects and their attributes

- Note access control matrix discussed previously is special case
 - Just make the attribute sets be empty
Primitive Operations

• **enter, delete** as before

• **create subject** \(s \) **with attribute tuple** \(att(s) \): create subject \(s \) with given attribute tuple; additionally, add an identity attribute with a unique value

• **create object** \(o \) **with attribute tuple** \(att(o) \): create object \(o \) with given attribute tuple; additionally, add an identity attribute with a unique value

• **destroy** as before except it also deletes the associated attribute tuple

• **update attribute** \(o.a_i \): update \(att(o) = (v_1, ..., v_i, ..., v_n) \) to

\[
att(o)' = (v_1, ..., v_i', ..., v_n),
\]

where \(v_i, v_i' \in Va_i \), and \(v_i \neq v_i' \)
Commands

• Like previous commands, except that conditions may include attribute predicates
• Let p give q r rights over f, if p owns f and value of p’s attribute $jobcode$ is between 3 and 5 inclusive

 $\text{command grant\cdot read\cdot file\cdot attribute\cdot 3to5}(p, f, q)$
 $\text{if own in } A[p, f] \text{ and } 3 \leq p.jobcode \text{ and } p.jobcode \leq 5$
 then
 $\text{enter } r \text{ into } A[q, f];$
 end