ECS 235B Module 6 HRU Result

What Is "Secure"?

- Adding a generic right r where there was not one is "leaking"
- In what follows, a right leaks if it was not present initially
- Alternately: not present in the previous state (not discussed here)
- If a system S, beginning in initial state s_{0}, cannot leak right r, it is safe with respect to the right r
- Otherwise it is called unsafe with respect to the right r

Safety Question

- Is there an algorithm for determining whether a protection system S with initial state s_{0} is safe with respect to a generic right r ?
- Here, "safe" = "secure" for an abstract model

Mono-Operational Commands

- Answer: yes
- Sketch of proof:

Consider minimal sequence of commands c_{1}, \ldots, c_{k} to leak the right.

- Can omit delete, destroy (with some rewriting)
- Can merge all creates into one

Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights; upper bound is $k \leq n(s+1)(o+1)+1$

General Case

- Answer: no
- Sketch of proof:

Reduce halting problem to safety problem
Turing Machine review:

- Infinite tape in one direction
- States K, symbols M; distinguished blank b
- Transition function $\delta(k, m)=\left(k^{\prime}, m^{\prime}, \mathrm{L}\right)$ means in state k, symbol m on tape location replaced by symbol m^{\prime}, head moves to left one square, and enters state k^{\prime}
- Halting state is q_{f}; TM halts when it enters this state

Mapping

Mapping

Command Mapping

- $\delta(k, C)=\left(k_{1}, \mathrm{X}, \mathrm{R}\right)$ at intermediate becomes

```
command C Ck,C
if Own in }A[\mp@subsup{s}{3}{},\mp@subsup{s}{4}{}]\mathrm{ and }k\mathrm{ in }A[\mp@subsup{s}{3}{},\mp@subsup{s}{3}{}]\mathrm{ and }C\mathrm{ in }A[\mp@subsup{s}{3}{},\mp@subsup{s}{3}{}
then
    delete }k\mathrm{ from }A[\mp@subsup{S}{3}{},\mp@subsup{S}{3}{}]
    delete C from A[s, 的];
    enter X into }A[\mp@subsup{s}{3}{},\mp@subsup{s}{3}{}]\mathrm{ ;
    enter k}\mp@subsup{k}{1}{}\mathrm{ into }A[\mp@subsup{S}{4}{},\mp@subsup{S}{4}{}]\mathrm{ ;
end
```


Mapping

Command Mapping

- $\delta\left(k_{1}, \mathrm{D}\right)=\left(k_{2}, \mathrm{Y}, \mathrm{R}\right)$ at end becomes

```
command crightmost k,C}(\mp@subsup{S}{4}{},\mp@subsup{S}{5}{\prime}
if end in }A[\mp@subsup{S}{4}{},\mp@subsup{S}{4}{}]\mathrm{ and }\mp@subsup{k}{1}{}\mathrm{ in }A[\mp@subsup{S}{4}{},\mp@subsup{S}{4}{}
    and D in A[S4, S4]
then
    delete end from A[S, S, S4];
    delete k from A[s, , S [ ];
    delete D from A[ S S, S4];
    enter Y into A[S S, 的];
    create subject }\mp@subsup{S}{5}{}\mathrm{ ;
    enter own into }A[\mp@subsup{S}{4}{},\mp@subsup{S}{5}{\prime}]
    enter end into }A[\mp@subsup{S}{5}{\prime},\mp@subsup{S}{5}{\prime}]
    enter k}\mp@subsup{k}{2}{}\mathrm{ into }A[\mp@subsup{S}{5}{\prime},\mp@subsup{S}{5}{\prime}]\mathrm{ ;
end
```


Rest of Proof

- Protection system exactly simulates a TM
- Exactly 1 end right in ACM
- 1 right in entries corresponding to state
- Thus, at most 1 applicable command
- If TM enters state q_{f}, then right has leaked
- If safety question decidable, then represent TM as above and determine if q_{f} leaks
- Implies halting problem decidable, which we know is false
- Conclusion: safety question undecidable

Other Results

- Set of unsafe systems is recursively enumerable
- Remove create primitive; then safety question is complete in P-SPACE
- Remove destroy, delete primitives; then safety question is undecidable
- Systems are called "monotonic"
- Safety question for biconditional protection systems is decidable
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

