ECS 235B Module 7 Take-Grant Model Rules

Take-Grant Protection Model

- A specific (not generic) system
 - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

System

objects (files, ...)

subjects (users, processes, ...)

don't care (either a subject or an object) $G \vdash_x G'$ apply a rewriting rule x (witness) to G to get G' $G \vdash^* G'$ apply a sequence of rewriting rules (witness) to G to get G' $R = \{t, g, r, w, ...\}$ set of rights

Rules

More Rules

These four rules are called the *de jure* rules

Symmetry

- 1. x creates (tg to new) v
- 2. z takes (g to v) from x
- 3. **z** grants (α to **y**) to **v**
- 4. \boldsymbol{x} takes (α to \boldsymbol{y}) from \boldsymbol{v}

Similar result for grant

Islands

- tg-path: path of distinct vertices connected by edges labeled t or g
 - Call them "tg-connected"
- island: maximal *tg*-connected subject-only subgraph
 - Any right one vertex has can be shared with any other vertex

Initial, Terminal Spans

- initial span from x to y
 - x subject
 - tg-path between **x**, **y** with word in $\{\overrightarrow{t}*\overrightarrow{g}\} \cup \{v\}$
 - Means x can give rights it has to y
- terminal span from x to y
 - x subject
 - tg-path between **x**, **y** with word in $\{\overrightarrow{t^*}\} \cup \{v\}$
 - Means x can acquire any rights y has

Bridges

• bridge: tg-path between subjects x, y, with associated word in

$$\{\overrightarrow{t}^*, \overrightarrow{t}^*, \overrightarrow{t}^* \not\in \overrightarrow{t}^*, \overrightarrow{t}^* \not\in \overrightarrow{t}^* \}$$

- Rights can be transferred between the two endpoints
- It is *not* an island as intermediate vertices are objects

Example

- islands
- bridges
- initial span
- terminal span

- { p, u } { w } { y, s' }
- uvw; wxy
- \mathbf{p} (associated word \mathbf{v})
- s's (associated word \overrightarrow{t})