ECS 235B Module 9 Stealing in the Take-Grant Model

can•steal Predicate

Definition:

- can steal(r, x, y, G₀) if, and only if, there is no edge from x to y labeled r in G₀, and there exists a sequence of protection graphs G₀, G₁, ..., G_n for which the following hold simultaneously:
 - a) There is an edge from **x** to **y** labeled r in G_n
 - b) There is a sequence of rule applications $\rho_1, ..., \rho_n$ such that $G_{i-1} \vdash G_i$ using ρ_i
 - c) For all vertices **v** and **w** in G_{i-1} , $1 \le i < n$, if there is an edge from **v** to **y** labeled *r*, then ρ_i is **not** of the form "**v** grants (*r* to **y**) to **w**"

can•steal Theorem

can•steal(α , **x**, **y**, G₀) if, and only if, the following hold simultaneously:

- a) There is no edge from **x** to **y** labeled α in G_0
- b) There exists a subject \mathbf{x}' such that $\mathbf{x}' = \mathbf{x}$ or \mathbf{x}' initially spans to \mathbf{x}
- c) There exists a vertex **s** with an edge labeled α to **y** in G_0
- d) can•share($t, \mathbf{x}', \mathbf{s}, G_0$) holds

Outline of Proof

- \Rightarrow : Assume conditions hold
- **x** subject
 - **x** gets *t* rights to **s**, then takes α to **y** from **s**
- **x** object
 - $can \bullet share(t, \mathbf{x'}, \mathbf{s}, G_0)$ holds
 - If **x'** has no α edge to **y** in G_0 , **x'** takes (α to **y**) from **s** and grants it to **x**
 - If x' has α edge to y in G₀, x' creates surrogate x'', gives it (t to s) and (g to x''); then x'' takes (α to y) and grants it to x

Outline of Proof

 \Leftarrow : Assume *can*•*steal*(α , **x**, **y**, *G*₀) holds

- First two conditions immediate from definition of can steal, can share
- Third condition immediate from theorem of conditions for *can*•*share*
- Fourth condition: ρ minimal length sequence of rule applications deriving G_n from G_0 ; *i* smallest index such that $G_{i-1} \vdash G_i$ by rule ρ_i and adding α from some **p** to **y** in G_i
 - What is ρ_i ?

Outline of Proof

- Not remove or create rule
 - y exists already
- Not grant rule
 - G_i first graph in which edge labeled α to y is added, so by definition of can•share, cannot be grant
- take rule: so *can*•*share*(*t*, **p**, **s**, *G*₀) holds
 - So is subject s' such that s' = s or terminally spans to s
 - Sequence of islands with $\mathbf{x'} \in I_1$ and $\mathbf{s'} \in I_n$
- Derive witness to can share(t, x', s, G₀) that does not use "s grants (α to y) to" anyone

Conspiracy

- Minimum number of actors to generate a witness for can•share(α, x, y, G₀)
- Access set describes the "reach" of a subject
- Deletion set is set of vertices that cannot be involved in a transfer of rights
- Build *conspiracy graph* to capture how rights flow, and derive actors from it

Example

Access Set

- Access set A(y) with focus y: set of vertices:
 - { **y** }
 - { **x** | **y** initially spans to **x** }
 - { x' | y terminally spans to x' }
- Idea is that focus can give rights to, or acquire rights from, a vertex in this set

Example

Deletion Set

- Deletion set δ(y, y'): contains those vertices z in A(y) ∩ A(y') such that:
 - y initially spans to z and y' terminally spans to z; or
 - y terminally spans to z and y' initially spans to z; or
 - **z** = **y**; or
 - z = y'
- Idea is that rights can be transferred between y and y' if this set nonempty

Example

Conspiracy Graph

- Abstracted graph *H* from *G*₀:
 - Each subject $\mathbf{x} \in G_0$ corresponds to a vertex $h(\mathbf{x}) \in H$
 - If $\delta(\mathbf{x}, \mathbf{y}) \neq \emptyset$, there is an edge between $h(\mathbf{x})$ and $h(\mathbf{y})$ in H
- Idea is that if h(x), h(y) are connected in H, then rights can be transferred between x and y in G₀

Results

- *I*(**x**): *h*(**x**), all vertices *h*(**y**) such that **y** initially spans to **x**
- T(x): h(x), all vertices h(y) such that y terminally spans to x
- Theorem: can share(α, x, y, G₀) iff there exists a path from some h(p) in l(x) to some h(q) in T(y)
- Theorem: I vertices on shortest path between h(p), h(q) in above theorem; I conspirators necessary and sufficient to witness

- $I(\mathbf{x}) = \{ h(\mathbf{x}) \}, T(\mathbf{z}) = \{ h(\mathbf{e}) \}$
- Path between h(x), h(e) so can share(r, x, z, G₀)
- Shortest path between $h(\mathbf{x})$, $h(\mathbf{e})$ has 4 vertices

⇒ Conspirators are **e**, **c**, **b**, **x**

Example: Witness

- 1. **e** grants (*r* to **z**) to **d**
- 2. **c** takes (*r* to **z**) from **d**
- 3. **c** grants (*r* to **z**) to **b**

4. **b** grants (*r* to **z**) to **a**5. **x** takes (*r* to **z**) from **a**