ECS 235B Module 10 Schematic Protection Model

Schematic Protection Model

• Type-based model

- Protection type: entity label determining how control rights affect the entity
 - Set at creation and cannot be changed
- Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a *domain*)
 - Ticket is **X**/*r*, where **X** is entity and *r* right
- Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?

Link Predicate

- Idea: *link_i*(**X**, **Y**) if **X** can assert some control right over **Y**
- Conjunction of disjunction of:
 - $X/z \in dom(X)$
 - $X/z \in dom(Y)$
 - $\mathbf{Y}/z \in dom(\mathbf{X})$
 - $\mathbf{Y}/z \in dom(\mathbf{Y})$
 - true

Examples

• Take-Grant:

 $link(X, Y) = Y/g \in dom(X) \lor X/t \in dom(Y)$

• Broadcast:

 $link(X, Y) = X/b \in dom(X)$

• Pull:

 $link(X, Y) = Y/p \in dom(Y)$

Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket X/r:c from dom(Y) to dom(Z)
 - $X/rc \in dom(Y)$
 - *link_i*(**Y**, **Z**)
 - $\tau(\mathbf{Y})/r:c \in f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- One filter function per link function

Example

- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times R$
 - Any ticket can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times RI$
 - Only tickets with inert rights can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = \emptyset$
 - No tickets can be transferred

Example

- Take-Grant Protection Model
 - TS = { subjects }, TO = { objects }
 - *RC* = { *tc*, *gc* }, *RI* = { *rc*, *wc* }
 - $link(\mathbf{p}, \mathbf{q}) = \mathbf{p}/t \in dom(\mathbf{q}) \lor \mathbf{q}/g \in dom(\mathbf{p})$
 - f(subject, subject) = { subject, object } × { tc, gc, rc, wc }

Create Operation

- Must handle type, tickets of new entity
- Relation cc(a, b) [cc for can-create]
 - Subject of type *a* can create entity of type *b*
- Rule of acyclic creates:

Types

- cr(a, b): tickets created when subject of type a creates entity of type b
 [cr for create-rule]
- **B** object: $cr(a, b) \subseteq \{ b/r: c \in RI \}$
 - A gets B/r:c iff $b/r:c \in cr(a, b)$
- **B** subject: *cr*(*a*, *b*) has two subsets
 - $cr_P(a, b)$ added to **A**, $cr_C(a, b)$ added to **B**
 - A gets B/r:c if $b/r:c \in cr_P(a, b)$
 - **B** gets A/r:c if $a/r:c \in cr_c(a, b)$

Non-Distinct Types

cr(a, a): who gets what?

- *self/r*:*c* are tickets for creator
- *a*/*r*:*c* tickets for created

 $cr(a, a) = \{ a/r:c, self/r:c \mid r:c \in R \}$

Attenuating Create Rule

cr(a, b) attenuating if:

1. $cr_{c}(a, b) \subseteq cr_{P}(a, b)$ and

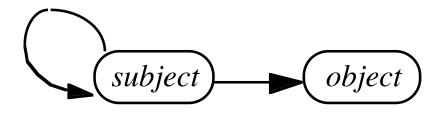
2.
$$a/r:c \in cr_P(a, b) \Rightarrow self/r:c \in cr_P(a, b)$$

Example: Owner-Based Policy

- Users can create files, creator can give itself any inert rights over file
 - cc = { (user , file) }
 - $cr(user, file) = \{ file/r:c \mid r \in RI \}$
- Attenuating, as graph is acyclic, loop free

Example: Take-Grant

- Say subjects create subjects (type *s*), objects (type *o*), but get only inert rights over latter
 - cc = { (s, s), (s, o) }
 - $cr_c(a, b) = \emptyset$
 - $cr_{P}(s, s) = \{s/tc, s/gc, s/rc, s/wc\}$
 - $cr_P(s, o) = \{s/rc, s/wc\}$
- Not attenuating, as no *self* tickets provided; *subject* creates *subject*



Safety Analysis

- Goal: identify types of policies with tractable safety analyses
- Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 - Called a maximal state

Definitions

- System begins at initial state
- Authorized operation causes legal transition
- Sequence of legal transitions moves system into final state
 - This sequence is a *history*
 - Final state is *derivable* from history, initial state

More Definitions

- States represented by ^h
- Set of subjects SUB^h, entities ENT^h
- Link relation in context of state *h* is *link^h*
- Dom relation in context of state *h* is *dom^h*

path^h(X,Y)

- X, Y connected by one link or a sequence of links
- Formally, either of these hold:
 - for some *i*, *link*^{*h*}_{*i*}(**X**, **Y**); or
 - there is a sequence of subjects X₀, ..., X_n such that link^h_i(X, X₀), link^h_i(X_n,Y), and for k = 1, ..., n, link^h_i(X_{k-1}, X_k)
- If multiple such paths, refer to path_i^h(X, Y)

Capacity cap(path^h(X,Y))

- Set of tickets that can flow over path^h(X,Y)
 - If $link_i^h(\mathbf{X},\mathbf{Y})$: set of tickets that can be copied over the link (i.e., $f_i(\tau(\mathbf{X}), \tau(\mathbf{Y}))$)
 - Otherwise, set of tickets that can be copied over all links in the sequence of links making up the path^h(X,Y)
- Note: all tickets (except those for the final link) *must* be copyable

Flow Function

- Idea: capture flow of tickets around a given state of the system
- Let there be *m path^hs* between subjects **X** and **Y** in state *h*. Then *flow function*

flow^h: $SUB^h \times SUB^h \rightarrow 2^{T \times R}$

is:

$$flow^h(\mathbf{X},\mathbf{Y}) = \bigcup_{i=1,...,m} cap(path_i^h(\mathbf{X},\mathbf{Y}))$$

Properties of Maximal State

- Maximizes flow between all pairs of subjects
 - State is called *
 - Ticket in *flow**(X,Y) means there exists a sequence of operations that can copy the ticket from X to Y
- Questions
 - Is maximal state unique?
 - Does every system have one?

Formal Definition

- Definition: $g \leq_0 h$ holds iff for all $\mathbf{X}, \mathbf{Y} \in SUB^0$, $flow^g(\mathbf{X}, \mathbf{Y}) \subseteq flow^h(\mathbf{X}, \mathbf{Y})$.
 - Note: if $g \leq_0 h$ and $h \leq_0 g$, then g, h equivalent
 - Defines set of equivalence classes on set of derivable states
- Definition: for a given system, state m is maximal iff h ≤₀ m for every derivable state h
- Intuition: flow function contains all tickets that can be transferred from one subject to another
 - All maximal states in same equivalence class

Maximal States

- Lemma. Given arbitrary finite set of states *H*, there exists a derivable state *m* such that for all $h \in H$, $h \leq_0 m$
- Outline of proof: induction
 - Basis: $H = \emptyset$; trivially true
 - Step: |H'| = n + 1, where $H' = G \cup \{h\}$. By IH, there is a $g \in G$ such that $x \leq_0 g$ for all $x \in G$.

Outline of Proof

- M interleaving histories of *g*, *h* which:
 - Preserves relative order of transitions in g, h
 - Omits second create operation if duplicated
- *M* ends up at state *m*
- If $path^{g}(\mathbf{X},\mathbf{Y})$ for $\mathbf{X}, \mathbf{Y} \in SUB^{g}$, $path^{m}(\mathbf{X},\mathbf{Y})$
 - So $g \leq_0 m$
- If $path^h(X,Y)$ for $X, Y \in SUB^h$, $path^m(X,Y)$
 - So $h \leq_0 m$
- Hence *m* maximal state in *H*'

Answer to Second Question

- Theorem: every system has a maximal state *
- Outline of proof: *K* is set of derivable states containing exactly one state from each equivalence class of derivable states
 - Consider X, Y in SUB⁰. Flow function's range is 2^{T×R}, so can take at most 2^{|T×R|} values. As there are |SUB⁰|² pairs of subjects in SUB⁰, at most 2^{|T×R|} |SUB⁰|² distinct equivalence classes; so K is finite
- Result follows from lemma

Safety Question

• In this model:

Is it possible to have a derivable state with X/r:c in dom(A), or does there exist a subject **B** with ticket X/rc in the initial state or which can demand X/rc and $\tau(X)/r:c$ in $flow^*(B,A)$?

- To answer: construct maximal state and test
 - Consider acyclic attenuating schemes; how do we construct maximal state?

Intuition

- Consider state *h*.
- State u corresponds to h but with minimal number of new entities created such that maximal state m can be derived with no create operations
 - So if in history from h to m, subject X creates two entities of type a, in u only one would be created; surrogate for both
- *m* can be derived from *u* in polynomial time, so if *u* can be created by adding a finite number of subjects to *h*, safety question decidable.

Fully Unfolded State

- State *u* derived from state 0 as follows:
 - delete all loops in *cc*; new relation *cc*'
 - mark all subjects as folded
 - while any $\mathbf{X} \in SUB^0$ is folded
 - mark it unfolded
 - if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity Y ∈ SUB^g, mark it folded
 - if any subject in state *h* can create an entity of its own type, do so
- Now in state *u*

Termination

- First loop terminates as *SUB*⁰ finite
- Second loop terminates:
 - Each subject in SUB⁰ can create at most | TS | children, and | TS | is finite
 - Each folded subject in | SUBⁱ | can create at most
 | TS | i children
 - When *i* = | *TS* |, subject cannot create more children; thus, folded is finite
 - Each loop removes one element
- Third loop terminates as SUB^h is finite

Surrogate

- Intuition: surrogate collapses multiple subjects of same type into single subject that acts for all of them
- Definition: given initial state 0, for every derivable state h define surrogate function $\sigma:ENT^h \rightarrow ENT^h$ by:
 - if **X** in *ENT*⁰, then σ (**X**) = **X**
 - if **Y** creates **X** and τ (**Y**) = τ (**X**), then σ (**X**) = σ (**Y**)
 - if **Y** creates **X** and τ (**Y**) $\neq \tau$ (**X**), then σ (**X**) = τ (**Y**)-surrogate of σ (**Y**)

Implications

- $\tau(\sigma(\mathbf{X})) = \tau(\mathbf{X})$
- If $\tau(\mathbf{X}) = \tau(\mathbf{Y})$, then $\sigma(\mathbf{X}) = \sigma(\mathbf{Y})$
- If $\tau(\mathbf{X}) \neq \tau(\mathbf{Y})$, then
 - $\sigma(\mathbf{X})$ creates $\sigma(\mathbf{Y})$ in the construction of u
 - $\sigma(\mathbf{X})$ creates entities \mathbf{X}' of type $\tau(\mathbf{X}') = \tau(\sigma(\mathbf{X}))$
- From these, for a system with an acyclic attenuating scheme, if X creates Y, then tickets that would be introduced by pretending that σ(X) creates σ(Y) are in dom^u(σ(X)) and dom^u(σ(Y))

Deriving Maximal State

- Idea
 - Reorder operations so that all creates come first and replace history with equivalent one using surrogates
 - Show maximal state of new history is also that of original history
 - Show maximal state can be derived from initial state

Reordering

- *H* legal history deriving state *h* from state 0
- Order operations: first create, then demand, then copy operations
- Build new history *G* from *H* as follows:
 - Delete all creates
 - "X demands Y/r:c" becomes "σ(X) demands σ(Y)/r:c"
 - "Y copies X /r:c from Y" becomes " $\sigma(Y)$ copies $\sigma(X)/r$:c from $\sigma(Y)$ "

Tickets in Parallel

- Lemma
 - All transitions in G legal; if $\mathbf{X}/r:c \in dom^h(Y)$, then $\sigma(\mathbf{X})/r:c \in dom^h(\sigma(\mathbf{Y}))$
- Outline of proof: induct on number of copy operations in *H*

Basis

- *H* has create, demand only; so *G* has demand only. σ preserves type, so by construction every demand operation in *G* legal.
- 3 ways for **X**/*r*:*c* to be in *dom^h*(**Y**):
 - $X/r: c \in dom^0(Y)$ means $X, Y \in ENT^0$, so trivially $\sigma(X)/r: c \in dom^g(\sigma(Y))$ holds
 - A create added X/r:c ∈ dom^h(Y): previous lemma says σ(X)/r:c ∈ dom^g(σ(Y)) holds
 - A demand added X/r:c ∈ dom^h(Y): corresponding demand operation in G gives σ(X)/r:c ∈ dom^g(σ(Y))

Hypothesis

- Claim holds for all histories with k copy operations
- History *H* has *k*+1 copy operations
 - *H*' initial sequence of *H* composed of *k* copy operations
 - *h*' state derived from *H*'

- G' sequence of modified operations corresponding to H'; g' derived state
 - G' legal history by hypothesis
- Final operation is "Z copied X/r:c from Y"
 - So h, h' differ by at most $X/r:c \in dom^h(Z)$
 - Construction of G means final operation is $\sigma(\mathbf{X})/r: c \in dom^{g}(\sigma(\mathbf{Y}))$
- Proves second part of claim

- *H*' legal, so for *H* to be legal, we have:
 - 1. $\mathbf{X}/rc \in dom^{h'}(\mathbf{Y})$
 - 2. $link_i^{h'}(\mathbf{Y}, \mathbf{Z})$
 - 3. $\tau(\mathbf{X}/r:c) \in f_i(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- By IH, 1, 2, as $\mathbf{X}/r:c \in dom^{h'}(\mathbf{Y})$,

 $\sigma(\mathbf{X})/r:c \in dom^{g'}(\sigma(\mathbf{Y}))$ and $link_i^{g'}(\sigma(\mathbf{Y}), \sigma(\mathbf{Z}))$

• As σ preserves type, IH and 3 imply

 $\tau(\sigma(\mathbf{X})/r:c) \in f_i(\tau((\sigma(\mathbf{Y})), \tau(\sigma(\mathbf{Z})))$

• IH says G' legal, so G is legal

Corollary

• If $link_i^h(\mathbf{X}, \mathbf{Y})$, then $link_i^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$

Main Theorem

- System has acyclic attenuating scheme
- For every history *H* deriving state *h* from initial state, there is a history *G* without create operations that derives *g* from the fully unfolded state *u* such that

 $(\forall \mathbf{X}, \mathbf{Y} \in SUB^h)[flow^h(\mathbf{X}, \mathbf{Y}) \subseteq flow^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))]$

 Meaning: any history derived from an initial state can be simulated by corresponding history applied to the fully unfolded state derived from the initial state

Proof

- Outline of proof: show that every path^h(X,Y) has corresponding path^g(σ(X), σ(Y)) such that cap(path^h(X,Y)) = cap(path^g(σ(X), σ(Y)))
 - Then corresponding sets of tickets flow through systems derived from *H* and *G*
 - As initial states correspond, so do those systems
- Proof by induction on number of links

Basis and Hypothesis

- Length of path^h(X, Y) = 1. By definition of path^h, link^h_i(X, Y), hence link^g(σ(X), σ(Y)). As σ preserves type, this means
 cap(path^h(X, Y)) = cap(path^g(σ(X), σ(Y)))
- Now assume this is true when *path^h*(**X**, **Y**) has length k

Step

- Let path^h(X, Y) have length k+1. Then there is a Z such that path^h(X, Z) has length k and link^h_j(Z, Y).
- By IH, there is a $path^{g}(\sigma(\mathbf{X}), \sigma(\mathbf{Z}))$ with same capacity as $path^{h}(\mathbf{X}, \mathbf{Z})$
- By corollary, $link_j^g(\sigma(\mathbf{Z}), \sigma(\mathbf{Y}))$
- As σ preserves type, there is $path^{g}(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))$ with

 $cap(path^h(\mathbf{X}, \mathbf{Y})) = cap(path^g(\sigma(\mathbf{X}), \sigma(\mathbf{Y})))$

Implication

- Let maximal state corresponding to u be #u
 - Deriving history has no creates
 - By theorem,

 $(\forall \mathbf{X}, \mathbf{Y} \in SUB^h)[flow^h(\mathbf{X}, \mathbf{Y}) \subseteq flow^{\#u}(\sigma(\mathbf{X}), \sigma(\mathbf{Y}))]$

If X ∈ SUB⁰, σ(X) = X, so:

 $(\forall \mathbf{X}, \mathbf{Y} \in SUB^0)[flow^h(\mathbf{X}, \mathbf{Y}) \subseteq flow^{\#u}(\mathbf{X}, \mathbf{Y})]$

- So #u is maximal state for system with acyclic attenuating scheme
 - *#u* derivable from *u* in time polynomial to |*SUB^u*|
 - Worst case computation for *flow*^{#u} is exponential in |*TS*|

Safety Result

 If the scheme is acyclic and attenuating, the safety question is decidable