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Schematic Protection Model

• Type-based model
• Protection type: entity label determining how control rights affect the entity

• Set at creation and cannot be changed
• Ticket: description of a single right over an entity

• Entity has sets of tickets (called a domain)
• Ticket is X/r, where X is entity and r right

• Functions determine rights transfer
• Link: are source, target “connected”?
• Filter: is transfer of ticket authorized?
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Link Predicate

• Idea: linki(X, Y) if X can assert some control right over Y
• Conjunction of disjunction of:
• X/z Î dom(X)
• X/z Î dom(Y)
• Y/z Î dom(X)
• Y/z Î dom(Y)
• true
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Examples

• Take-Grant:
link(X, Y) = Y/g Î dom(X) v X/t Î dom(Y)

• Broadcast:
link(X, Y) = X/b Î dom(X)

• Pull:
link(X, Y) = Y/p Î dom(Y)
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Filter Function

• Range is set of copyable tickets
• Entity type, right

• Domain is subject pairs
• Copy a ticket X/r:c from dom(Y) to dom(Z)
• X/rc Î dom(Y)
• linki(Y, Z)
• t(Y)/r:c Î fi(t(Y), t(Z))

• One filter function per link function
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Example

• f(t(Y), t(Z)) = T ´ R
• Any ticket can be transferred (if other conditions met)

• f(t(Y), t(Z)) = T ´ RI
• Only tickets with inert rights can be transferred (if other conditions met)

• f(t(Y), t(Z)) = Æ
• No tickets can be transferred
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Example

• Take-Grant Protection Model
• TS = { subjects }, TO = { objects }
• RC = { tc, gc }, RI = { rc, wc }
• link(p, q) = p/t Î dom(q) Ú q/g Î dom(p)
• f(subject, subject) = { subject, object } ´ { tc, gc, rc, wc } 
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Create Operation

• Must handle type, tickets of new entity
• Relation cc(a, b) [cc for can-create]
• Subject of type a can create entity of type b

• Rule of acyclic creates: 

a b

c d

a b

c d
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Types

• cr(a, b): tickets created when subject of type a creates entity of type b 
[cr for create-rule]
• B object: cr(a, b) Í { b/r:c Î RI }
• A gets B/r:c iff b/r:c Î cr(a, b)

• B subject: cr(a, b) has two subsets
• crP(a, b) added to A, crC(a, b) added to B
• A gets B/r:c if b/r:c Î crP(a, b)
• B gets A/r:c if a/r:c Î crC(a, b)
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Non-Distinct Types

cr(a, a): who gets what?
• self/r:c are tickets for creator
• a/r:c tickets for created
cr(a, a) = { a/r:c, self/r:c | r:c Î R}
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Attenuating Create Rule

cr(a, b) attenuating if:
1.  crC(a, b) Í crP(a, b) and
2.  a/r:c Î crP(a, b) Þ self/r:c Î crP(a, b)
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Example: Owner-Based Policy

• Users can create files, creator can give itself any 
inert rights over file
• cc = {  ( user ,  file ) }
• cr(user, file) = { file/r:c | r Î RI }

• Attenuating, as graph is acyclic, loop free

owner file
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Example: Take-Grant

• Say subjects create subjects (type s), objects (type o), but 
get only inert rights over latter
• cc = { ( s, s ), ( s, o ) }
• crC(a, b) = Æ
• crP(s, s) = {s/tc, s/gc, s/rc, s/wc }
• crP(s, o) = {s/rc, s/wc }

• Not attenuating, as no self tickets provided; subject creates 
subject

subject object
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Safety Analysis

• Goal: identify types of policies with tractable safety analyses
• Approach: derive a state in which additional entries, rights do not 

affect the analysis; then analyze this state
• Called a maximal state
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Definitions

• System begins at initial state
• Authorized operation causes legal transition
• Sequence of legal transitions moves system into final state
• This sequence is a history
• Final state is derivable from history, initial state
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More Definitions

• States represented by h

• Set of subjects SUBh, entities ENTh

• Link relation in context of state h is linkh

• Dom relation in context of state h is domh
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pathh(X,Y)

• X, Y connected by one link or a sequence of links
• Formally, either of these hold:
• for some i, linkih(X, Y); or
• there is a sequence of subjects X0, …, Xn such that linkih(X, X0), linkih(Xn,Y), and 

for k = 1, …, n, linkih(Xk–1, Xk)

• If multiple such paths, refer to pathj
h(X, Y)
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Capacity cap(pathh(X,Y))

• Set of tickets that can flow over pathh(X,Y)
• If linkih(X,Y): set of tickets that can be copied over the link (i.e., fi(t(X), t(Y)))
• Otherwise, set of tickets that can be copied over all links in the sequence of 

links making up the pathh(X,Y)

• Note: all tickets (except those for the final link) must be copyable
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Flow Function

• Idea: capture flow of tickets around a given state of the system
• Let there be m pathhs between subjects X and Y in state h. Then flow 

function
flowh: SUBh ´ SUBh ® 2T´R

 is:

flowh(X,Y) = Èi=1,…,m cap(pathi
h(X,Y))
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Properties of Maximal State

• Maximizes flow between all pairs of subjects
• State is called *
• Ticket in flow*(X,Y) means there exists a sequence of operations that can 

copy the ticket from X to Y

• Questions
• Is maximal state unique?
• Does every system have one?
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Formal Definition

• Definition: g ≤0 h holds iff for all X, Y Î SUB0, flowg(X,Y) Í flowh(X,Y).
• Note: if g ≤0 h and h ≤0 g, then g, h equivalent
• Defines set of equivalence classes on set of derivable states

• Definition: for a given system, state m is maximal iff h ≤0 m for every 
derivable state h
• Intuition: flow function contains all tickets that can be transferred 

from one subject to another
• All maximal states in same equivalence class
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Maximal States

• Lemma. Given arbitrary finite set of states H, there exists a derivable 
state m such that for all h Î H, h ≤0 m
• Outline of proof: induction
• Basis: H = Æ; trivially true
• Step: |Hʹ| = n + 1, where Hʹ = G È {h}. By IH, there is a g Î G such that x ≤0 g 

for all x Î G.
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Outline of Proof

• M interleaving histories of g, h which:
• Preserves relative order of transitions in g, h
• Omits second create operation if duplicated

• M ends up at state m
• If pathg(X,Y) for X, Y Î SUBg, pathm(X,Y)
• So g ≤0 m

• If pathh(X,Y) for X, Y Î SUBh, pathm(X,Y)
• So h ≤0 m

• Hence m maximal state in Hʹ
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Answer to Second Question

• Theorem: every system has a maximal state *
• Outline of proof: K is set of derivable states containing exactly one 

state from each equivalence class of derivable states
• Consider X, Y in SUB0. Flow function’s range is 2T´R, so can take at most 2|T´R| 

values. As there are |SUB0|2 pairs of subjects in SUB0, at most 2|T´R| |SUB0|2 
distinct equivalence classes; so K is finite

• Result follows from lemma
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Safety Question

• In this model:
 Is it possible to have a derivable state with X/r:c in dom(A), or does there exist 

a subject B with ticket X/rc in the initial state or which can demand X/rc and 
t(X)/r:c in flow*(B,A)?

• To answer: construct maximal state and test
• Consider acyclic attenuating schemes; how do we construct maximal state?
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Intuition

• Consider state h.
• State u corresponds to h but with minimal number of new entities 

created such that maximal state m can be derived with no create 
operations
• So if in history from h to m, subject X creates two entities of type a, in u only 

one would be created; surrogate for both

• m can be derived from u in polynomial time, so if u can be created by 
adding a finite number of subjects to h, safety question decidable.
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Fully Unfolded State

• State u derived from state 0 as follows:
• delete all loops in cc; new relation ccʹ
• mark all subjects as folded
• while any X Î SUB0 is folded

• mark it unfolded
• if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity Y Î 

SUBg, mark it folded
• if any subject in state h can create an entity of its own type, do so

• Now in state u
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Termination

• First loop terminates as SUB0 finite
• Second loop terminates:
• Each subject in SUB0 can create at most | TS | children, and | TS | is finite
• Each folded subject in | SUBi | can create at most
    | TS | – i children
• When i = | TS |, subject cannot create more children; thus, folded is finite
• Each loop removes one element

• Third loop terminates as SUBh is finite
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Surrogate

• Intuition: surrogate collapses multiple subjects of same type into 
single subject that acts for all of them
• Definition: given initial state 0, for every derivable state h define 

surrogate function s:ENTh®ENTh by:
• if X in ENT0, then s(X) = X
• if Y creates X and t(Y) = t(X), then s(X) = s(Y)
• if Y creates X and t(Y) ≠ t(X), then s(X) = t(Y)-surrogate of s(Y)
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Implications

• t(s(X)) = t(X)
• If t(X) = t(Y), then s(X) = s(Y)
• If t(X) ≠ t(Y), then
• s(X) creates s(Y) in the construction of u
• s(X) creates entities X¢ of type t(X¢) = t(s(X))

• From these, for a system with an acyclic attenuating scheme, if X 
creates Y, then tickets that would be introduced by pretending that 
s(X) creates s(Y) are in domu(s(X)) and domu(s(Y))
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Deriving Maximal State

• Idea
• Reorder operations so that all creates come first and replace history with 

equivalent one using surrogates
• Show maximal state of new history is also that of original history
• Show maximal state can be derived from initial state
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Reordering

• H legal history deriving state h from state 0
• Order operations: first create, then demand, then copy operations
• Build new history G from H as follows:
• Delete all creates
• “X demands Y/r:c” becomes “s(X) demands s(Y)/r:c”
• “Y copies X /r:c from Y” becomes “s(Y) copies s(X)/r:c from s(Y)”
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Tickets in Parallel

• Lemma
• All transitions in G legal; if X/r:c Î domh(Y), then s(X)/r:c Î domh(s(Y))

• Outline of proof: induct on number of copy operations in H
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Basis

• H has create, demand only; so G has demand only. s preserves type, 
so by construction every demand operation in G legal.
• 3 ways for X/r:c to be in domh(Y):
• X/r:c Î dom0(Y) means X, Y Î ENT0, so trivially s(X)/r:c Î domg(s(Y)) holds
• A create added X/r:c Î domh(Y): previous lemma says s(X)/r:c Î domg(s(Y)) 

holds
• A demand added X/r:c Î domh(Y): corresponding demand operation in G 

gives s(X)/r:c Î domg(s(Y))
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Hypothesis

• Claim holds for all histories with k copy operations
• History H has k+1 copy operations
• H¢ initial sequence of H composed of k copy operations
• h¢ state derived from H¢
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Step

• Gʹ sequence of modified operations corresponding to Hʹ; gʹ derived 
state
• Gʹ legal history by hypothesis

• Final operation is “Z copied X/r:c from Y”
• So h, hʹ differ by at most X/r:c Î domh(Z)
• Construction of G means final operation is s(X)/r:c Î domg(s(Y))

• Proves second part of claim
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Step

• Hʹ legal, so for H to be legal, we have:
1.  X/rc Î domh¢(Y)
2.  linkihʹ(Y, Z)
3.  t(X/r:c) Î fi(t(Y), t(Z))

• By IH, 1, 2, as X/r:c Î domhʹ(Y),
 s(X)/r:c Î domgʹ(s(Y)) and linkigʹ(s(Y), s(Z))

• As s preserves type, IH and 3 imply
t(s(X)/r:c) Î fi(t((s(Y)), t(s(Z)))

• IH says Gʹ legal, so G is legal
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Corollary

• If linkih(X, Y), then linkig(s(X), s(Y))
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Main Theorem

• System has acyclic attenuating scheme
• For every history H deriving state h from initial state, there is a history 

G without create operations that derives g from the fully unfolded 
state u such that

("X,Y Î SUBh)[flowh(X, Y) Í flowg(s(X), s(Y))]

• Meaning: any history derived from an initial state can be simulated by 
corresponding history applied to the fully unfolded state derived from 
the initial state
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Proof

• Outline of proof: show that every pathh(X,Y) has corresponding 
pathg(s(X), s(Y)) such that cap(pathh(X,Y)) = cap(pathg(s(X), s(Y)))
• Then corresponding sets of tickets flow through systems derived from H and 

G
• As initial states correspond, so do those systems

• Proof by induction on number of links
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Basis and Hypothesis

• Length of pathh(X, Y) = 1. By definition of pathh, linkih(X, Y), hence 
linkig(s(X), s(Y)). As s preserves type, this means

cap(pathh(X, Y)) = cap(pathg(s(X), s(Y)))
• Now assume this is true when pathh(X, Y) has length k
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Step

• Let pathh(X, Y) have length k+1. Then there is a Z such that pathh(X, Z) 
has length k and linkjh(Z, Y).
• By IH, there is a pathg(s(X), s(Z)) with same capacity as pathh(X, Z)
• By corollary, linkjg(s(Z), s(Y))
• As s preserves type, there is pathg(s(X), s(Y)) with

cap(pathh(X, Y)) = cap(pathg(s(X), s(Y)))
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Implication

• Let maximal state corresponding to u be #u
• Deriving history has no creates
• By theorem,

("X,Y Î SUBh)[flowh(X, Y) Í flow#u(s(X), s(Y))]
• If X Î SUB0, s(X) = X, so:

("X,Y Î SUB0)[flowh(X, Y) Í flow#u(X, Y)]

• So #u is maximal state for system with acyclic attenuating scheme
• #u derivable from u in time polynomial to |SUBu|
• Worst case computation for flow#u is exponential in |TS|
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Safety Result

• If the scheme is acyclic and attenuating, the safety question is 
decidable
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