
ECS 235B Module 10
Schematic Protection Model

Module 10 ECS 235B, Foundations of Computer and Information Security 1

Schematic Protection Model

• Type-based model
• Protection type: entity label determining how control rights affect the entity

• Set at creation and cannot be changed
• Ticket: description of a single right over an entity

• Entity has sets of tickets (called a domain)
• Ticket is X/r, where X is entity and r right

• Functions determine rights transfer
• Link: are source, target “connected”?
• Filter: is transfer of ticket authorized?

Module 10 ECS 235B, Foundations of Computer and Information Security 2

Link Predicate

• Idea: linki(X, Y) if X can assert some control right over Y
• Conjunction of disjunction of:
• X/z Î dom(X)
• X/z Î dom(Y)
• Y/z Î dom(X)
• Y/z Î dom(Y)
• true

Module 10 ECS 235B, Foundations of Computer and Information Security 3

Examples

• Take-Grant:
link(X, Y) = Y/g Î dom(X) v X/t Î dom(Y)

• Broadcast:
link(X, Y) = X/b Î dom(X)

• Pull:
link(X, Y) = Y/p Î dom(Y)

Module 10 ECS 235B, Foundations of Computer and Information Security 4

Filter Function

• Range is set of copyable tickets
• Entity type, right

• Domain is subject pairs
• Copy a ticket X/r:c from dom(Y) to dom(Z)
• X/rc Î dom(Y)
• linki(Y, Z)
• t(Y)/r:c Î fi(t(Y), t(Z))

• One filter function per link function

Module 10 ECS 235B, Foundations of Computer and Information Security 5

Example

• f(t(Y), t(Z)) = T ´ R
• Any ticket can be transferred (if other conditions met)

• f(t(Y), t(Z)) = T ´ RI
• Only tickets with inert rights can be transferred (if other conditions met)

• f(t(Y), t(Z)) = Æ
• No tickets can be transferred

Module 10 ECS 235B, Foundations of Computer and Information Security 6

Example

• Take-Grant Protection Model
• TS = { subjects }, TO = { objects }
• RC = { tc, gc }, RI = { rc, wc }
• link(p, q) = p/t Î dom(q) Ú q/g Î dom(p)
• f(subject, subject) = { subject, object } ´ { tc, gc, rc, wc }

Module 10 ECS 235B, Foundations of Computer and Information Security 7

Create Operation

• Must handle type, tickets of new entity
• Relation cc(a, b) [cc for can-create]
• Subject of type a can create entity of type b

• Rule of acyclic creates:

a b

c d

a b

c d

Module 10 ECS 235B, Foundations of Computer and Information Security 8

Types

• cr(a, b): tickets created when subject of type a creates entity of type b
[cr for create-rule]
• B object: cr(a, b) Í { b/r:c Î RI }
• A gets B/r:c iff b/r:c Î cr(a, b)

• B subject: cr(a, b) has two subsets
• crP(a, b) added to A, crC(a, b) added to B
• A gets B/r:c if b/r:c Î crP(a, b)
• B gets A/r:c if a/r:c Î crC(a, b)

Module 10 ECS 235B, Foundations of Computer and Information Security 9

Non-Distinct Types

cr(a, a): who gets what?
• self/r:c are tickets for creator
• a/r:c tickets for created
cr(a, a) = { a/r:c, self/r:c | r:c Î R}

Module 10 ECS 235B, Foundations of Computer and Information Security 10

Attenuating Create Rule

cr(a, b) attenuating if:
1. crC(a, b) Í crP(a, b) and
2. a/r:c Î crP(a, b) Þ self/r:c Î crP(a, b)

Module 10 ECS 235B, Foundations of Computer and Information Security 11

Example: Owner-Based Policy

• Users can create files, creator can give itself any
inert rights over file
• cc = { (user , file) }
• cr(user, file) = { file/r:c | r Î RI }

• Attenuating, as graph is acyclic, loop free

owner file

Module 10 ECS 235B, Foundations of Computer and Information Security 12

Example: Take-Grant

• Say subjects create subjects (type s), objects (type o), but
get only inert rights over latter
• cc = { (s, s), (s, o) }
• crC(a, b) = Æ
• crP(s, s) = {s/tc, s/gc, s/rc, s/wc }
• crP(s, o) = {s/rc, s/wc }

• Not attenuating, as no self tickets provided; subject creates
subject

subject object

Module 10 ECS 235B, Foundations of Computer and Information Security 13

Safety Analysis

• Goal: identify types of policies with tractable safety analyses
• Approach: derive a state in which additional entries, rights do not

affect the analysis; then analyze this state
• Called a maximal state

Module 10 ECS 235B, Foundations of Computer and Information Security 14

Definitions

• System begins at initial state
• Authorized operation causes legal transition
• Sequence of legal transitions moves system into final state
• This sequence is a history
• Final state is derivable from history, initial state

Module 10 ECS 235B, Foundations of Computer and Information Security 15

More Definitions

• States represented by h

• Set of subjects SUBh, entities ENTh

• Link relation in context of state h is linkh

• Dom relation in context of state h is domh

Module 10 ECS 235B, Foundations of Computer and Information Security 16

pathh(X,Y)

• X, Y connected by one link or a sequence of links
• Formally, either of these hold:
• for some i, linkih(X, Y); or
• there is a sequence of subjects X0, …, Xn such that linkih(X, X0), linkih(Xn,Y), and

for k = 1, …, n, linkih(Xk–1, Xk)

• If multiple such paths, refer to pathj
h(X, Y)

Module 10 ECS 235B, Foundations of Computer and Information Security 17

Capacity cap(pathh(X,Y))

• Set of tickets that can flow over pathh(X,Y)
• If linkih(X,Y): set of tickets that can be copied over the link (i.e., fi(t(X), t(Y)))
• Otherwise, set of tickets that can be copied over all links in the sequence of

links making up the pathh(X,Y)

• Note: all tickets (except those for the final link) must be copyable

Module 10 ECS 235B, Foundations of Computer and Information Security 18

Flow Function

• Idea: capture flow of tickets around a given state of the system
• Let there be m pathhs between subjects X and Y in state h. Then flow

function
flowh: SUBh ´ SUBh ® 2T´R

 is:

flowh(X,Y) = Èi=1,…,m cap(pathi
h(X,Y))

Module 10 ECS 235B, Foundations of Computer and Information Security 19

Properties of Maximal State

• Maximizes flow between all pairs of subjects
• State is called *
• Ticket in flow*(X,Y) means there exists a sequence of operations that can

copy the ticket from X to Y

• Questions
• Is maximal state unique?
• Does every system have one?

Module 10 ECS 235B, Foundations of Computer and Information Security 20

Formal Definition

• Definition: g ≤0 h holds iff for all X, Y Î SUB0, flowg(X,Y) Í flowh(X,Y).
• Note: if g ≤0 h and h ≤0 g, then g, h equivalent
• Defines set of equivalence classes on set of derivable states

• Definition: for a given system, state m is maximal iff h ≤0 m for every
derivable state h
• Intuition: flow function contains all tickets that can be transferred

from one subject to another
• All maximal states in same equivalence class

Module 10 ECS 235B, Foundations of Computer and Information Security 21

Maximal States

• Lemma. Given arbitrary finite set of states H, there exists a derivable
state m such that for all h Î H, h ≤0 m
• Outline of proof: induction
• Basis: H = Æ; trivially true
• Step: |Hʹ| = n + 1, where Hʹ = G È {h}. By IH, there is a g Î G such that x ≤0 g

for all x Î G.

Module 10 ECS 235B, Foundations of Computer and Information Security 22

Outline of Proof

• M interleaving histories of g, h which:
• Preserves relative order of transitions in g, h
• Omits second create operation if duplicated

• M ends up at state m
• If pathg(X,Y) for X, Y Î SUBg, pathm(X,Y)
• So g ≤0 m

• If pathh(X,Y) for X, Y Î SUBh, pathm(X,Y)
• So h ≤0 m

• Hence m maximal state in Hʹ

Module 10 ECS 235B, Foundations of Computer and Information Security 23

Answer to Second Question

• Theorem: every system has a maximal state *
• Outline of proof: K is set of derivable states containing exactly one

state from each equivalence class of derivable states
• Consider X, Y in SUB0. Flow function’s range is 2T´R, so can take at most 2|T´R|

values. As there are |SUB0|2 pairs of subjects in SUB0, at most 2|T´R| |SUB0|2
distinct equivalence classes; so K is finite

• Result follows from lemma

Module 10 ECS 235B, Foundations of Computer and Information Security 24

Safety Question

• In this model:
 Is it possible to have a derivable state with X/r:c in dom(A), or does there exist

a subject B with ticket X/rc in the initial state or which can demand X/rc and
t(X)/r:c in flow*(B,A)?

• To answer: construct maximal state and test
• Consider acyclic attenuating schemes; how do we construct maximal state?

Module 10 ECS 235B, Foundations of Computer and Information Security 25

Intuition

• Consider state h.
• State u corresponds to h but with minimal number of new entities

created such that maximal state m can be derived with no create
operations
• So if in history from h to m, subject X creates two entities of type a, in u only

one would be created; surrogate for both

• m can be derived from u in polynomial time, so if u can be created by
adding a finite number of subjects to h, safety question decidable.

Module 10 ECS 235B, Foundations of Computer and Information Security 26

Fully Unfolded State

• State u derived from state 0 as follows:
• delete all loops in cc; new relation ccʹ
• mark all subjects as folded
• while any X Î SUB0 is folded

• mark it unfolded
• if X can create entity Y of type y, it does so (call this the y-surrogate of X); if entity Y Î

SUBg, mark it folded
• if any subject in state h can create an entity of its own type, do so

• Now in state u

Module 10 ECS 235B, Foundations of Computer and Information Security 27

Termination

• First loop terminates as SUB0 finite
• Second loop terminates:
• Each subject in SUB0 can create at most | TS | children, and | TS | is finite
• Each folded subject in | SUBi | can create at most
 | TS | – i children
• When i = | TS |, subject cannot create more children; thus, folded is finite
• Each loop removes one element

• Third loop terminates as SUBh is finite

Module 10 ECS 235B, Foundations of Computer and Information Security 28

Surrogate

• Intuition: surrogate collapses multiple subjects of same type into
single subject that acts for all of them
• Definition: given initial state 0, for every derivable state h define

surrogate function s:ENTh®ENTh by:
• if X in ENT0, then s(X) = X
• if Y creates X and t(Y) = t(X), then s(X) = s(Y)
• if Y creates X and t(Y) ≠ t(X), then s(X) = t(Y)-surrogate of s(Y)

Module 10 ECS 235B, Foundations of Computer and Information Security 29

Implications

• t(s(X)) = t(X)
• If t(X) = t(Y), then s(X) = s(Y)
• If t(X) ≠ t(Y), then
• s(X) creates s(Y) in the construction of u
• s(X) creates entities X¢ of type t(X¢) = t(s(X))

• From these, for a system with an acyclic attenuating scheme, if X
creates Y, then tickets that would be introduced by pretending that
s(X) creates s(Y) are in domu(s(X)) and domu(s(Y))

Module 10 ECS 235B, Foundations of Computer and Information Security 30

Deriving Maximal State

• Idea
• Reorder operations so that all creates come first and replace history with

equivalent one using surrogates
• Show maximal state of new history is also that of original history
• Show maximal state can be derived from initial state

Module 10 ECS 235B, Foundations of Computer and Information Security 31

Reordering

• H legal history deriving state h from state 0
• Order operations: first create, then demand, then copy operations
• Build new history G from H as follows:
• Delete all creates
• “X demands Y/r:c” becomes “s(X) demands s(Y)/r:c”
• “Y copies X /r:c from Y” becomes “s(Y) copies s(X)/r:c from s(Y)”

Module 10 ECS 235B, Foundations of Computer and Information Security 32

Tickets in Parallel

• Lemma
• All transitions in G legal; if X/r:c Î domh(Y), then s(X)/r:c Î domh(s(Y))

• Outline of proof: induct on number of copy operations in H

Module 10 ECS 235B, Foundations of Computer and Information Security 33

Basis

• H has create, demand only; so G has demand only. s preserves type,
so by construction every demand operation in G legal.
• 3 ways for X/r:c to be in domh(Y):
• X/r:c Î dom0(Y) means X, Y Î ENT0, so trivially s(X)/r:c Î domg(s(Y)) holds
• A create added X/r:c Î domh(Y): previous lemma says s(X)/r:c Î domg(s(Y))

holds
• A demand added X/r:c Î domh(Y): corresponding demand operation in G

gives s(X)/r:c Î domg(s(Y))

Module 10 ECS 235B, Foundations of Computer and Information Security 34

Hypothesis

• Claim holds for all histories with k copy operations
• History H has k+1 copy operations
• H¢ initial sequence of H composed of k copy operations
• h¢ state derived from H¢

Module 10 ECS 235B, Foundations of Computer and Information Security 35

Step

• Gʹ sequence of modified operations corresponding to Hʹ; gʹ derived
state
• Gʹ legal history by hypothesis

• Final operation is “Z copied X/r:c from Y”
• So h, hʹ differ by at most X/r:c Î domh(Z)
• Construction of G means final operation is s(X)/r:c Î domg(s(Y))

• Proves second part of claim

Module 10 ECS 235B, Foundations of Computer and Information Security 36

Step

• Hʹ legal, so for H to be legal, we have:
1. X/rc Î domh¢(Y)
2. linkihʹ(Y, Z)
3. t(X/r:c) Î fi(t(Y), t(Z))

• By IH, 1, 2, as X/r:c Î domhʹ(Y),
 s(X)/r:c Î domgʹ(s(Y)) and linkigʹ(s(Y), s(Z))

• As s preserves type, IH and 3 imply
t(s(X)/r:c) Î fi(t((s(Y)), t(s(Z)))

• IH says Gʹ legal, so G is legal

Module 10 ECS 235B, Foundations of Computer and Information Security 37

Corollary

• If linkih(X, Y), then linkig(s(X), s(Y))

Module 10 ECS 235B, Foundations of Computer and Information Security 38

Main Theorem

• System has acyclic attenuating scheme
• For every history H deriving state h from initial state, there is a history

G without create operations that derives g from the fully unfolded
state u such that

("X,Y Î SUBh)[flowh(X, Y) Í flowg(s(X), s(Y))]

• Meaning: any history derived from an initial state can be simulated by
corresponding history applied to the fully unfolded state derived from
the initial state

Module 10 ECS 235B, Foundations of Computer and Information Security 39

Proof

• Outline of proof: show that every pathh(X,Y) has corresponding
pathg(s(X), s(Y)) such that cap(pathh(X,Y)) = cap(pathg(s(X), s(Y)))
• Then corresponding sets of tickets flow through systems derived from H and

G
• As initial states correspond, so do those systems

• Proof by induction on number of links

Module 10 ECS 235B, Foundations of Computer and Information Security 40

Basis and Hypothesis

• Length of pathh(X, Y) = 1. By definition of pathh, linkih(X, Y), hence
linkig(s(X), s(Y)). As s preserves type, this means

cap(pathh(X, Y)) = cap(pathg(s(X), s(Y)))
• Now assume this is true when pathh(X, Y) has length k

Module 10 ECS 235B, Foundations of Computer and Information Security 41

Step

• Let pathh(X, Y) have length k+1. Then there is a Z such that pathh(X, Z)
has length k and linkjh(Z, Y).
• By IH, there is a pathg(s(X), s(Z)) with same capacity as pathh(X, Z)
• By corollary, linkjg(s(Z), s(Y))
• As s preserves type, there is pathg(s(X), s(Y)) with

cap(pathh(X, Y)) = cap(pathg(s(X), s(Y)))

Module 10 ECS 235B, Foundations of Computer and Information Security 42

Implication

• Let maximal state corresponding to u be #u
• Deriving history has no creates
• By theorem,

("X,Y Î SUBh)[flowh(X, Y) Í flow#u(s(X), s(Y))]
• If X Î SUB0, s(X) = X, so:

("X,Y Î SUB0)[flowh(X, Y) Í flow#u(X, Y)]

• So #u is maximal state for system with acyclic attenuating scheme
• #u derivable from u in time polynomial to |SUBu|
• Worst case computation for flow#u is exponential in |TS|

Module 10 ECS 235B, Foundations of Computer and Information Security 43

Safety Result

• If the scheme is acyclic and attenuating, the safety question is
decidable

Module 10 ECS 235B, Foundations of Computer and Information Security 44

