ECS 235B Module 11 Expressiveness

Expressive Power

- How do the sets of systems that models can describe compare?
 - If HRU equivalent to SPM, SPM provides more specific answer to safety question
 - If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SMP has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SMP cannot express multiparent creates easily, and not at all if the parents are of different types because can create allows for only one type of creator

Multiparent Create

- Solves mutual suspicion problem
 - Create proxy jointly, each gives it needed rights
- In HRU:

```
command multicreate(s_0, s_1, o)
if r in a[s_0, s_1] and r in a[s_1, s_0]
then
create object o;
enter r into a[s_0, o];
enter r into a[s_1, o];
end
```

SPM and Multiparent Create

- cc extended in obvious way
 - $cc \subset TS \times ... \times TS \times T$
- Symbols
 - **X**₁, ..., **X**_n parents, **Y** created
 - $R_{1,i}$, $R_{2,i}$, R_3 , $R_{4,i} \subseteq R$
- Rules
 - $cr_{P,i}(\tau(\mathbf{X}_1), ..., \tau(\mathbf{X}_n)) = \mathbf{Y}/R_{1,1} \cup \mathbf{X}_i/R_{2,i}$
 - $cr_{C}(\tau(\mathbf{X}_{1}), ..., \tau(\mathbf{X}_{n})) = \mathbf{Y}/R_{3} \cup \mathbf{X}_{1}/R_{4,1} \cup ... \cup \mathbf{X}_{n}/R_{4,n}$

Example

- Anna, Bill must do something cooperatively
 - But they don't trust each other
- Jointly create a proxy
 - Each gives proxy only necessary rights
- In ESPM:
 - Anna, Bill type a; proxy type p; right $x \in R$
 - cc(a, a) = p
 - $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 - $cr_{proxy}(a, a, p) = \{ Anna/x, Bill/x \}$

2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects P_1 , P_2 , P_3 ; child C):
 - $cc(\tau(\mathbf{P}_1), \tau(\mathbf{P}_2), \tau(\mathbf{P}_3)) = Z \subseteq T$
 - $cr_{P1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1}$
 - $cr_{P2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2}$
 - $cr_{P3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3}$

General Approach

- Define agents for parents and child
 - Agents act as surrogates for parents
 - If create fails, parents have no extra rights
 - If create succeeds, parents, child have exactly same rights as in 3-parent creates
 - Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents P_1 , P_2 , P_3 have types p_1 , p_2 , p_3
- Child **C** of type *c*
- Parent agents A_1 , A_2 , A_3 of types a_1 , a_2 , a_3
- Child agent S of type s
- Type t is parentage
 - if $X/t \in dom(Y)$, X is Y's parent
- Types t, a_1 , a_2 , a_3 , s are new types

can•create

- Following added to can create:
 - $cc(p_1) = a_1$
 - $cc(p_2, a_1) = a_2$
 - $cc(p_3, a_2) = a_3$
 - Parents creating their agents; note agents have maximum of 2 parents
 - $cc(a_3) = s$
 - Agent of all parents creates agent of child
 - cc(s) = c
 - Agent of child creates child

Creation Rules

- Following added to create rule:
 - $cr_P(p_1, a_1) = \emptyset$
 - $cr_{c}(p_{1}, a_{1}) = p_{1}/Rtc$
 - Agent's parent set to creating parent; agent has all rights over parent
 - $cr_{Pfirst}(p_2, a_1, a_2) = \emptyset$
 - $cr_{Psecond}(p_2, a_1, a_2) = \emptyset$
 - $cr_c(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Creation Rules

- $cr_{Pfirst}(p_3, a_2, a_3) = \emptyset$
- $cr_{Psecond}(p_3, a_2, a_3) = \emptyset$
- $cr_c(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc$
 - Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- $cr_P(a_3, s) = \emptyset$
- $cr_{C}(a_{3}, s) = a_{3}/tc$
 - Child's agent has third agent as parent $cr_P(a_3, s) = \emptyset$
- $cr_P(s, c) = \mathbf{C}/Rtc$
- $cr_{c}(s, c) = c/R_{3}t$
 - Child's agent gets full rights over child; child gets R₃ rights over agent

Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
 - $link_1(\mathbf{A}_2, \mathbf{A}_1) = \mathbf{A}_1/t \in dom(\mathbf{A}_2) \wedge \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_1(\mathbf{A}_3, \mathbf{A}_2) = \mathbf{A}_2/t \in dom(\mathbf{A}_3) \wedge \mathbf{A}_3/t \in dom(\mathbf{A}_3)$
 - $link_2(S, A_3) = A_3/t \in dom(S) \wedge C/t \in dom(C)$
 - $link_3(\mathbf{A}_1, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_1)$
 - $link_3(\mathbf{A}_2, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_2)$
 - $link_3(\mathbf{A}_3, \mathbf{C}) = \mathbf{C}/t \in dom(\mathbf{A}_3)$
 - $link_4(\mathbf{A}_1, \mathbf{P}_1) = \mathbf{P}_1/t \in dom(\mathbf{A}_1) \wedge \mathbf{A}_1/t \in dom(\mathbf{A}_1)$
 - $link_4(\mathbf{A}_2, \mathbf{P}_2) = \mathbf{P}_2/t \in dom(\mathbf{A}_2) \wedge \mathbf{A}_2/t \in dom(\mathbf{A}_2)$
 - $link_4(\mathbf{A}_3, \mathbf{P}_3) = \mathbf{P}_3/t \in dom(\mathbf{A}_3) \wedge \mathbf{A}_3/t \in dom(\mathbf{A}_3)$

Filter Functions

•
$$f_1(a_2, a_1) = a_1/t \cup c/Rtc$$

•
$$f_1(a_3, a_2) = a_2/t \cup c/Rtc$$

•
$$f_2(s, a_3) = a_3/t \cup c/Rtc$$

•
$$f_3(a_1, c) = p_1/R_{4,1}$$

•
$$f_3(a_2, c) = p_2/R_{4,2}$$

•
$$f_3(a_3, c) = p_3/R_{4,3}$$

•
$$f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$$

•
$$f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$$

•
$$f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$$

Construction

Create A_1 , A_2 , A_3 , S, C; then

- P₁ has no relevant tickets
- P₂ has no relevant tickets
- P₃ has no relevant tickets
- \mathbf{A}_1 has \mathbf{P}_1/Rtc
- \mathbf{A}_2 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- **S** has $A_3/tc \cup C/Rtc$
- C has C/R_3t

Construction

- Only $link_2(\mathbf{S}, \mathbf{A}_3)$ true \Rightarrow apply f_2
 - A_3 has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$
- Now $link_1(\mathbf{A}_3, \mathbf{A}_2)$ true \Rightarrow apply f_1
 - A_2 has $P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc$
- Now $link_1(\mathbf{A}_2, \mathbf{A}_1)$ true \Rightarrow apply f_1
 - \mathbf{A}_1 has $\mathbf{P}_2/Rtc \cup \mathbf{A}_1/t \cup \mathbf{C}/Rtc$
- Now all $link_3$ s true \Rightarrow apply f_3
 - C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$

Finish Construction

- Now $link_4$ is true \Rightarrow apply f_4
 - P_1 has $C/R_{1,1} \cup P_1/R_{2,1}$
 - P_2 has $C/R_{1.2} \cup P_2/R_{2.2}$
 - P_3 has $C/R_{1,3} \cup P_3/R_{2,3}$
- 3-parent joint create gives same rights to P₁, P₂, P₃, C
- If create of **C** fails, link₂ fails, so construction fails

Theorem

- The two-parent joint creation operation can implement an *n*-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.
- Proof: by construction, as above
 - Difference is that the two systems need not start at the same initial state

Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
 - Proof similar to that for SPM

Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices

Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1 , P_2 , P_3 parents
 - Create node C with type c with edges of type e
 - Add node A_1 of type a and edge from P_1 to A_1 of type e'

Next Step

- A_1 , P_2 create A_2 ; A_2 , P_3 create A_3
- Type of nodes, edges are a and e'

Next Step

- A₃ creates **S**, of type *a*
- **S** creates **C**, of type *c*

Last Step

- Edge adding operations:
 - $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 - $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 - $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e

Definitions

- Scheme: graph representation as above
- *Model*: set of schemes
- Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted

Example

- Above 2-parent joint creation simulation in scheme TWO
- Equivalent to 3-parent joint creation scheme *THREE* in which P_1 , P_2 , P_3 , C are of same type as in *TWO*, and edges from P_1 , P_2 , P_3 to C are of type e, and no types a and e' exist in *TWO*

Simulation

Scheme A simulates scheme B iff

- every state B can reach has a corresponding state in A that A can reach; and
- every state that A can reach either corresponds to a state B can reach,
 or has a successor state that corresponds to a state B can reach
 - The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of THREE

Expressive Power

- If there is a scheme in MA that no scheme in MB can simulate, MB less expressive than MA
- If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
- If MA as expressive as MB and vice versa, MA and MB equivalent

Example

- Scheme A in model M
 - Nodes **X**₁, **X**₂, **X**₃
 - 2-parent joint create
 - 1 node type, 1 edge type
 - No edge adding operations
 - Initial state: **X**₁, **X**₂, **X**₃, no edges
- Scheme B in model N
 - All same as A except no 2-parent joint create
 - 1-parent create
- Which is more expressive?

Can A Simulate B?

- Scheme A simulates 1-parent create: have both parents be same node
 - Model M as expressive as model N

Can B Simulate A?

- Suppose X₁, X₂ jointly create Y in A
 - Edges from X₁, X₂ to Y, no edge from X₃ to Y
- Can B simulate this?
 - Without loss of generality, X₁ creates Y
 - Must have edge adding operation to add edge from X₂ to Y
 - One type of node, one type of edge, so operation can add edge between any 2 nodes

No

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X₂ to C can add one from X₃ to C
 - A cannot enter this state
 - B cannot transition to a state in which Y has even number of incoming edges
 - No remove rule
- So B cannot simulate A; N less expressive than M

Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- Proof by contradiction
 - Scheme A is multiparent model
 - Scheme *B* is single parent create
 - Claim: B can simulate A, without assumption that they start in the same initial state
 - Note: example assumed same initial state

Outline of Proof

- **X**₁, **X**₂ nodes in *A*
 - They create Y₁, Y₂, Y₃ using multiparent create rule
 - Y₁, Y₂ create **Z**, again using multiparent create rule
 - Note: no edge from Y_3 to Z can be added, as A has no edge-adding operation

Outline of Proof

- **W**, **X**₁, **X**₂ nodes in *B*
 - W creates Y_1 , Y_2 , Y_3 using single parent create rule, and adds edges for X_1 , X_2 to all using edge adding rule
 - Y_1 creates Z, again using single parent create rule; now must add edge from Y_2 to Z to simulate A
 - Use same edge adding rule to add edge from Y_3 to Z: cannot duplicate this in scheme A!

Meaning

- Scheme B cannot simulate scheme A, contradicting hypothesis
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent