ECS 235B Module 11 Expressiveness

Expressive Power

- How do the sets of systems that models can describe compare?
- If HRU equivalent to SPM, SPM provides more specific answer to safety question
- If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

- SPM more abstract
- Analyses focus on limits of model, not details of representation
- HRU allows revocation
- SMP has no equivalent to delete, destroy
- HRU allows multiparent creates
- SMP cannot express multiparent creates easily, and not at all if the parents are of different types because can•create allows for only one type of creator

Multiparent Create

- Solves mutual suspicion problem
- Create proxy jointly, each gives it needed rights
- In HRU:

```
command multicreate( }\mp@subsup{S}{0}{},\mp@subsup{S}{1}{},0
if r in a[s0, s, ] and r in a[s, s, so]
then
    create object o;
    enter r into a[sor o];
    enter r into a[s1, O];
end
```


SPM and Multiparent Create

- cc extended in obvious way
- cc $\subseteq T S \times \ldots \times T S \times T$
- Symbols
- $\mathbf{X}_{1}, \ldots, \mathbf{X}_{n}$ parents, \mathbf{Y} created
- $R_{1, i,} R_{2, i}, R_{3}, R_{4, i} \subseteq R$
- Rules
- $\operatorname{cr}_{\mathrm{p}, \mathrm{i}}\left(\tau\left(\mathbf{X}_{1}\right), \ldots, \tau\left(\mathbf{X}_{n}\right)\right)=\mathbf{Y} / R_{1,1} \cup \mathbf{X}_{i} / R_{2, i}$
- $\operatorname{cr}_{\mathrm{C}}\left(\tau\left(\mathbf{X}_{1}\right), \ldots, \tau\left(\mathbf{X}_{n}\right)\right)=\mathbf{Y} / R_{3} \cup \mathbf{X}_{1} / R_{4,1} \cup \ldots \cup \mathbf{X}_{n} / R_{4, n}$

Example

- Anna, Bill must do something cooperatively
- But they don't trust each other
- Jointly create a proxy
- Each gives proxy only necessary rights
- In ESPM:
- Anna, Bill type a; proxy type p; right $x \in R$
- $c c(a, a)=p$
- $c r_{\text {Anna }}(a, a, p)=c r_{\text {Bill }}(a, a, p)=\varnothing$
- $c r_{\text {proxy }}(a, a, p)=\{$ Anna $/ x$, Bill $/ x\}$

2-Parent Joint Create Suffices

- Goal: emulate 3-parent joint create with 2-parent joint create
- Definition of 3-parent joint create (subjects $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}$; child \mathbf{C}):
- $c c\left(\tau\left(\mathbf{P}_{1}\right), \tau\left(\mathbf{P}_{2}\right), \tau\left(\mathbf{P}_{3}\right)\right)=Z \subseteq T$
- $\operatorname{cr}_{\mathbf{P}_{1}}\left(\tau\left(\mathbf{P}_{\mathbf{P}}\right), \tau\left(\mathbf{P}_{2}\right), \tau\left(\mathbf{P}_{3}\right)\right)=\mathbf{C} / R_{1,1} \cup \mathbf{P}_{1} / R_{2,1}$
$-\operatorname{cr}_{\mathbf{P}_{2}}\left(\tau\left(\mathbf{P}_{1}\right), \tau\left(\mathbf{P}_{2}\right), \tau\left(\mathbf{P}_{3}\right)\right)=\mathbf{C} / R_{2,1} \cup \mathbf{P}_{\mathbf{2}} / R_{2,2}$
$\cdot \operatorname{cr}_{\mathbf{P}_{3}}\left(\tau\left(\mathbf{P}_{1}\right), \tau\left(\mathbf{P}_{2}\right), \tau\left(\mathbf{P}_{3}\right)\right)=\mathbf{C} / R_{3,1} \cup \mathbf{P}_{3} / R_{2,3}$

General Approach

- Define agents for parents and child
- Agents act as surrogates for parents
- If create fails, parents have no extra rights
- If create succeeds, parents, child have exactly same rights as in 3-parent creates
- Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

- Parents $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}$ have types p_{1}, p_{2}, p_{3}
- Child C of type C
- Parent agents $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$ of types a_{1}, a_{2}, a_{3}
- Child agent \mathbf{S} of type s
- Type t is parentage
- if $\mathbf{X} / t \in \operatorname{dom}(\mathbf{Y}), \mathbf{X}$ is \mathbf{Y} 's parent
- Types $t, a_{1}, a_{2}, a_{3}, s$ are new types

can•create

- Following added to can•create:
- $\mathrm{cc}\left(p_{1}\right)=a_{1}$
- $\operatorname{cc}\left(p_{2}, a_{1}\right)=a_{2}$
- $\operatorname{cc}\left(p_{3}, a_{2}\right)=a_{3}$
- Parents creating their agents; note agents have maximum of 2 parents
- $\operatorname{cc}\left(a_{3}\right)=s$
- Agent of all parents creates agent of child
- $\mathrm{cc}(\mathrm{s})=c$
- Agent of child creates child

Creation Rules

- Following added to create rule:
- $\operatorname{cr}_{p}\left(p_{1}, a_{1}\right)=\varnothing$
- $\operatorname{cr}_{c}\left(p_{1}, a_{1}\right)=p_{1} /$ Rtc
- Agent's parent set to creating parent; agent has all rights over parent
- $\operatorname{cr}_{\text {Pfirst }}\left(p_{2}, a_{1}, a_{2}\right)=\varnothing$
- $\operatorname{cr}_{\text {Psecond }}\left(p_{2}, a_{1}, a_{2}\right)=\varnothing$
- $\operatorname{cr}_{c}\left(p_{2}, a_{1}, a_{2}\right)=p_{2} / R t c \cup a_{1} / t c$
- Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)

Creation Rules

- $\operatorname{cr}_{\text {Pfirst }}\left(p_{3}, a_{2}, a_{3}\right)=\varnothing$
- $\operatorname{cr}_{\text {Psecond }}\left(p_{3}, a_{2}, a_{3}\right)=\varnothing$
- $\operatorname{cr}_{c}\left(p_{3}, a_{2}, a_{3}\right)=p_{3} / R t c \cup a_{2} / t c$
- Agent's parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- $\operatorname{cr}_{p}\left(a_{3}, s\right)=\varnothing$
- $\operatorname{cr}_{c}\left(a_{3}, s\right)=a_{3} / t c$
- Child's agent has third agent as parent $c r_{p}\left(a_{3}, s\right)=\varnothing$
- $c r_{p}(s, c)=\mathbf{C} / R t c$
- $c r_{C}(s, c)=c / R_{3} t$
- Child's agent gets full rights over child; child gets R_{3} rights over agent

Link Predicates

- Idea: no tickets to parents until child created
- Done by requiring each agent to have its own parent rights
- $\operatorname{link}_{1}\left(\mathbf{A}_{2}, \mathbf{A}_{1}\right)=\mathbf{A}_{1} / t \in \operatorname{dom}\left(\mathbf{A}_{2}\right) \wedge \mathbf{A}_{2} / t \in \operatorname{dom}\left(\mathbf{A}_{2}\right)$
- $\operatorname{link}_{1}\left(\mathbf{A}_{3}, \mathbf{A}_{2}\right)=\mathbf{A}_{2} / t \in \operatorname{dom}\left(\mathbf{A}_{3}\right) \wedge \mathbf{A}_{3} / t \in \operatorname{dom}\left(\mathbf{A}_{3}\right)$
- $\operatorname{link}_{2}\left(\mathbf{S}, \mathbf{A}_{3}\right)=\mathbf{A}_{3} / t \in \operatorname{dom}(\mathbf{S}) \wedge \mathbf{C} / t \in \operatorname{dom}(\mathbf{C})$
- $\operatorname{link}_{3}\left(\mathbf{A}_{1}, \mathbf{C}\right)=\mathbf{C} / t \in \operatorname{dom}\left(\mathbf{A}_{1}\right)$
- $\operatorname{link}_{3}\left(\mathbf{A}_{2}, \mathbf{C}\right)=\mathbf{C} / t \in \operatorname{dom}\left(\mathbf{A}_{2}\right)$
- $\operatorname{link}_{3}\left(\mathbf{A}_{3}, \mathbf{C}\right)=\mathbf{C} / t \in \operatorname{dom}\left(\mathbf{A}_{3}\right)$
- $\operatorname{link}_{4}\left(\mathbf{A}_{1}, \mathbf{P}_{1}\right)=\mathbf{P}_{1} / t \in \operatorname{dom}\left(\mathbf{A}_{1}\right) \wedge \mathbf{A}_{1} / t \in \operatorname{dom}\left(\mathbf{A}_{1}\right)$
- $\operatorname{link}_{4}\left(\mathbf{A}_{2}, \mathbf{P}_{2}\right)=\mathbf{P}_{2} / t \in \operatorname{dom}\left(\mathbf{A}_{2}\right) \wedge \mathbf{A}_{2} / t \in \operatorname{dom}\left(\mathbf{A}_{2}\right)$
- $\operatorname{link}_{4}\left(\mathbf{A}_{3}, \mathbf{P}_{3}\right)=\mathbf{P}_{3} / t \in \operatorname{dom}\left(\mathbf{A}_{3}\right) \wedge \mathbf{A}_{3} / t \in \operatorname{dom}\left(\mathbf{A}_{3}\right)$

Filter Functions

- $f_{1}\left(a_{2}, a_{1}\right)=a_{1} / t \cup c / R t c$
- $f_{1}\left(a_{3}, a_{2}\right)=a_{2} / t \cup c / R t c$
- $f_{2}\left(s, a_{3}\right)=a_{3} / t \cup c / R t c$
- $f_{3}\left(a_{1}, c\right)=p_{1} / R_{4,1}$
- $f_{3}\left(a_{2}, c\right)=p_{2} / R_{4,2}$
- $f_{3}\left(a_{3}, c\right)=p_{3} / R_{4,3}$
- $f_{4}\left(a_{1}, p_{1}\right)=c / R_{1,1} \cup p_{1} / R_{2,1}$
- $f_{4}\left(a_{2}, p_{2}\right)=c / R_{1,2} \cup p_{2} / R_{2,2}$
- $f_{4}\left(a_{3}, p_{3}\right)=c / R_{1,3} \cup p_{3} / R_{2,3}$

Construction

Create $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{S}, \mathbf{C}$; then

- \mathbf{P}_{1} has no relevant tickets
- \mathbf{P}_{2} has no relevant tickets
- \mathbf{P}_{3} has no relevant tickets
- \mathbf{A}_{1} has $\mathbf{P}_{1} /$ Rtc
- \mathbf{A}_{2} has $\mathbf{P}_{2} /$ Rtc $\cup \mathbf{A}_{1} / t c$
- \mathbf{A}_{3} has $\mathbf{P}_{3} / R t c \cup \mathbf{A}_{2} / t c$
- \mathbf{S} has $\mathbf{A}_{3} / t c \cup \mathbf{C} / R t c$
- \mathbf{C} has $\mathbf{C} / R_{3} t$

Construction

- Only link ${ }_{2}\left(\mathbf{S}, \mathbf{A}_{3}\right)$ true \Rightarrow apply f_{2}
- \mathbf{A}_{3} has $\mathbf{P}_{3} / R t c \cup \mathbf{A}_{2} / t \cup \mathbf{A}_{3} / t \cup \mathbf{C} / R t c$
- Now link ${ }_{1}\left(\mathbf{A}_{3}, \mathbf{A}_{2}\right)$ true \Rightarrow apply f_{1}
- \mathbf{A}_{2} has $\mathbf{P}_{2} /$ Rtc $\cup \mathbf{A}_{1} / t c \cup \mathbf{A}_{2} / t \cup \mathbf{C} / R t c$
- Now link ${ }_{1}\left(\mathbf{A}_{2}, \mathbf{A}_{1}\right)$ true \Rightarrow apply f_{1}
- \mathbf{A}_{1} has $\mathbf{P}_{2} / R t c \cup \mathbf{A}_{1} / t \cup \mathbf{C} / R t c$
- Now all link ${ }_{3}$ strue \Rightarrow apply f_{3}
- \mathbf{C} has $\mathbf{C} / R_{3} \cup \mathbf{P}_{1} / R_{4,1} \cup \mathbf{P}_{2} / R_{4,2} \cup \mathbf{P}_{3} / R_{4,3}$

Finish Construction

- Now link $_{4}$ is true \Rightarrow apply f_{4}
- \mathbf{P}_{1} has $\mathbf{C} / R_{1,1} \cup \mathbf{P}_{1} / R_{2,1}$
- \mathbf{P}_{2} has $\mathbf{C} / R_{1,2} \cup \mathbf{P}_{2} / R_{2,2}$
- \mathbf{P}_{3} has $\mathbf{C} / R_{1,3} \cup \mathbf{P}_{3} / R_{2,3}$
- 3-parent joint create gives same rights to $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}, \mathbf{C}$
- If create of \mathbf{C} fails, link ${ }_{2}$ fails, so construction fails

Theorem

- The two-parent joint creation operation can implement an n-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.
- Proof: by construction, as above
- Difference is that the two systems need not start at the same initial state

Theorems

- Monotonic ESPM and the monotonic HRU model are equivalent.
- Safety question in ESPM also decidable if acyclic attenuating scheme
- Proof similar to that for SPM

Expressiveness

- Graph-based representation to compare models
- Graph
- Vertex: represents entity, has static type
- Edge: represents right, has static type
- Graph rewriting rules:
- Initial state operations create graph in a particular state
- Node creation operations add nodes, incoming edges
- Edge adding operations add new edges between existing vertices

Example: 3-Parent Joint Creation

- Simulate with 2-parent
- Nodes $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}$ parents
- Create node \mathbf{C} with type c with edges of type e
- Add node \mathbf{A}_{1} of type a and edge from \mathbf{P}_{1} to \mathbf{A}_{1} of type e^{\prime}

Next Step

- $\mathbf{A}_{1}, \mathbf{P}_{2}$ create $\mathbf{A}_{2} ; \mathbf{A}_{2}, \mathbf{P}_{3}$ create \mathbf{A}_{3}
- Type of nodes, edges are a and e^{\prime}

Next Step

- \mathbf{A}_{3} creates \mathbf{S}, of type a
- \mathbf{S} creates \mathbf{C}, of type c

Last Step

- Edge adding operations:
- $\mathbf{P}_{1} \rightarrow \mathbf{A}_{1} \rightarrow \mathbf{A}_{2} \rightarrow \mathbf{A}_{3} \rightarrow \mathbf{S} \rightarrow \mathbf{C}: \mathbf{P}_{1}$ to \mathbf{C} edge type e
- $\mathbf{P}_{2} \rightarrow \mathbf{A}_{2} \rightarrow \mathbf{A}_{3} \rightarrow \mathbf{S} \rightarrow \mathbf{C}: \mathbf{P}_{2}$ to \mathbf{C} edge type e
- $\mathbf{P}_{3} \rightarrow \mathbf{A}_{3} \rightarrow \mathbf{S} \rightarrow \mathbf{C}: \mathbf{P}_{3}$ to \mathbf{C} edge type e

Definitions

- Scheme: graph representation as above
- Model: set of schemes
- Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted

Example

- Above 2-parent joint creation simulation in scheme TWO
- Equivalent to 3-parent joint creation scheme THREE in which $\mathbf{P}_{1}, \mathbf{P}_{2}$, $\mathbf{P}_{3}, \mathbf{C}$ are of same type as in TWO, and edges from $\mathbf{P}_{1}, \mathbf{P}_{2}, \mathbf{P}_{3}$ to \mathbf{C} are of type e, and no types a and e^{\prime} exist in TWO

Simulation

Scheme A simulates scheme B iff

- every state B can reach has a corresponding state in A that A can reach; and
- every state that A can reach either corresponds to a state B can reach, or has a successor state that corresponds to a state B can reach
- The last means that A can have intermediate states not corresponding to states in B, like the intermediate ones in TWO in the simulation of THREE

Expressive Power

- If there is a scheme in $M A$ that no scheme in $M B$ can simulate, $M B$ less expressive than MA
- If every scheme in $M A$ can be simulated by a scheme in $M B, M B$ as expressive as MA
- If $M A$ as expressive as $M B$ and vice versa, $M A$ and $M B$ equivalent

Example

- Scheme A in model M
- Nodes $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$
- 2-parent joint create
- 1 node type, 1 edge type
- No edge adding operations
- Initial state: $\mathbf{X}_{1}, \mathbf{X}_{2}, \mathbf{X}_{3}$, no edges
- Scheme B in model N
- All same as A except no 2-parent joint create
- 1-parent create
- Which is more expressive?

Can A Simulate B ?

- Scheme A simulates 1-parent create: have both parents be same node
- Model M as expressive as model N

Can B Simulate A ?

- Suppose $\mathbf{X}_{1}, \mathbf{X}_{2}$ jointly create \mathbf{Y} in A
- Edges from $\mathbf{X}_{1}, \mathbf{X}_{2}$ to \mathbf{Y}, no edge from \mathbf{X}_{3} to \mathbf{Y}
- Can B simulate this?
- Without loss of generality, \mathbf{X}_{1} creates \mathbf{Y}
- Must have edge adding operation to add edge from \mathbf{X}_{2} to \mathbf{Y}
- One type of node, one type of edge, so operation can add edge between any 2 nodes

No

- All nodes in A have even number of incoming edges
- 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from \mathbf{X}_{2} to \mathbf{C} can add one from X_{3} to C
- A cannot enter this state
- B cannot transition to a state in which \mathbf{Y} has even number of incoming edges
- No remove rule
- So B cannot simulate $A ; N$ less expressive than M

Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- Proof by contradiction
- Scheme A is multiparent model
- Scheme B is single parent create
- Claim: B can simulate A, without assumption that they start in the same initial state
- Note: example assumed same initial state

Outline of Proof

- $\mathbf{X}_{1}, \mathbf{X}_{2}$ nodes in A
- They create $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}$ using multiparent create rule
- $\mathbf{Y}_{1}, \mathbf{Y}_{2}$ create \mathbf{Z}, again using multiparent create rule
- Note: no edge from \mathbf{Y}_{3} to \mathbf{Z} can be added, as A has no edge-adding operation

Outline of Proof

- W, $\mathbf{X}_{1}, \mathbf{X}_{2}$ nodes in B
- \mathbf{W} creates $\mathbf{Y}_{1}, \mathbf{Y}_{2}, \mathbf{Y}_{3}$ using single parent create rule, and adds edges for $\mathbf{X}_{1}, \mathbf{X}_{2}$ to all using edge adding rule
- \mathbf{Y}_{1} creates \mathbf{Z}, again using single parent create rule; now must add edge from \mathbf{Y}_{2} to \mathbf{Z} to simulate A
- Use same edge adding rule to add edge from \mathbf{Y}_{3} to \mathbf{Z} : cannot duplicate this in scheme A !

Meaning

- Scheme B cannot simulate scheme A, contradicting hypothesis
- ESPM more expressive than SPM
- ESPM multiparent and monotonic
- SPM monotonic but single parent

