ECS 235B Module 12
Typed Access Matrix Model
Typed Access Matrix Model

• Like ACM, but with set of types T
 • All subjects, objects have types
 • Set of types for subjects TS

• Protection state is (S, O, τ, A)
 • $\tau: O \rightarrow T$ specifies type of each object
 • If X subject, $\tau(X)$ in TS
 • If X object, $\tau(X)$ in $T - TS$
Create Rules

- Subject creation
 - create subject s of type ts
 - s must not exist as subject or object when operation executed
 - $ts \in TS$

- Object creation
 - create object o of type to
 - o must not exist as subject or object when operation executed
 - $to \in T - TS$
Create Subject

• Precondition: $s \not\in S$

• Primitive command: \textbf{create subject} s \textbf{of type} t

• Postconditions:

 • $S' = S \cup \{s\}$, $O' = O \cup \{s\}$

 • $(\forall y \in O)[\tau'(y) = \tau(y)]$, $\tau'(s) = t$

 • $(\forall y \in O')[\alpha'[s, y] = \emptyset]$, $(\forall x \in S')[\alpha'[x, s] = \emptyset]$

 • $(\forall x \in S)(\forall y \in O)[\alpha'[x, y] = a[x, y]]$
Create Object

• Precondition: \(o \notin O \)

• Primitive command: create object \(o \) of type \(t \)

• Postconditions:
 • \(S' = S, \ O' = O \cup \{ o \} \)
 • \((\forall y \in O)[\tau'(y) = \tau(y)], \ \tau'(o) = t \)
 • \((\forall x \in S')[a'[x, o] = \emptyset] \)
 • \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]] \)
Definitions

• MTAM Model: TAM model without **delete, destroy**
 • MTAM is Monotonic TAM

• \(\alpha(x_1:t_1, \ldots, x_n:t_n) \) create command
 • \(t_i \) child type in \(\alpha \) if any of **create subject** \(x_i \) **of type** \(t_i \) or **create object** \(x_i \) **of type** \(t_i \) occur in \(\alpha \)
 • \(t_i \) parent type otherwise
command cry·havoc(s_1 : u, s_2 : u, o_1 : v, o_2 : v,
 o_3 : w, o_4 : w)

create subject s_1 of type u;
create object o_1 of type v;
create object o_3 of type w;
enter r into a[s_2, s_1];
enter r into a[s_2, o_2];
enter r into a[s_2, o_4]

end
Creation Graph

- u, v, w child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles
Acyclic Creates

\[
\text{command } \text{cry}\cdot\text{havoc}(s_1 : u, \ s_2 : u, \ o_1 : v, \ o_3 : w) \\
\text{create object } o_1 \text{ of type } v; \\
\text{create object } o_3 \text{ of type } w; \\
\text{enter } r \text{ into } a[s_2, s_1]; \\
\text{enter } r \text{ into } a[s_2, o_1]; \\
\text{enter } r \text{ into } a[s_2, o_3] \\
\text{end}
\]
Creation Graph

- v, w child types
- u parent type
- Graph: lines from parent types to child types
- This one has no cycles
Theorems

• Safety decidable for systems with acyclic MTAM schemes
 • In fact, it’s NP-hard

• Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 • “Ternary” means commands have no more than 3 parameters
 • Equivalent in expressive power to MTAM