ECS 235B Module 13 Security Policies

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state

Confidentiality

- X set of entities, I information
- I has the *confidentiality* property with respect to X if no x ∈ X can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - *I* is confidential with respect to *X* if students cannot obtain final exam answer key

Integrity

- X set of entities, I information
- I has the *integrity* property with respect to X if all x ∈ X trust information in I
- Types of integrity:
 - Trust *I*, its conveyance and protection (data integrity)
 - *I* information about origin of something or an identity (origin integrity, authentication)
 - *I* resource: means resource functions as it should (assurance)

Availability

- X set of entities, I resource
- I has the *availability* property with respect to X if all $x \in X$ can access I
- Types of availability:
 - Traditional: *x* gets access or not
 - Quality of service: promised a level of access (for example, a specific level of bandwidth); *x* meets it or not, even though some access is achieved

Policy Models

- Abstract description of a policy or class of policies
- Focus on points of interest in policies
 - Security levels in multilevel security models
 - Separation of duty in Clark-Wilson model
 - Conflict of interest in Chinese Wall model

Mechanisms

- Entity or procedure that enforces some part of the security policy
 - Access controls (like bits to prevent someone from reading a homework file)
 - Disallowing people from bringing CDs and floppy disks into a computer facility to control what is placed on systems

Question

- Policy disallows cheating
 - Includes copying homework, with or without permission
- CS class has students do homework on computer
- Anne forgets to read-protect her homework file
- Bill copies it
- Who breached security?
 - Anne, Bill, or both?

Answer Part 1

- Bill clearly breached security
 - Policy forbids copying homework assignment
 - Bill did it
 - System entered unauthorized state (Bill having a copy of Anne's assignment)
- If not explicit in computer security policy, certainly implicit
 - Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so

Answer Part 2

- Anne didn't protect her homework
 - Not required by security policy
- She didn't breach security
- If policy said students had to read-protect homework files, then Anne did breach security
 - She didn't do this

Types of Security Policies

- Military (governmental) security policy
 - Policy primarily protecting confidentiality
- Commercial security policy
 - Policy primarily protecting integrity
- Confidentiality policy
 - Policy protecting only confidentiality
- Integrity policy
 - Policy protecting only integrity

Integrity and Transactions

- Begin in consistent state
 - "Consistent" defined by specification
- Perform series of actions (*transaction*)
 - Actions cannot be interrupted
 - If actions complete, system in consistent state
 - If actions do not complete, system reverts to a consistent state

Types of Access Control

- Discretionary Access Control (DAC, IBAC)
 - Individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - System mechanism controls access to object, and individual cannot alter that access
- Originator Controlled Access Control (ORCON, ORGCON)
 - Originator (creator) of information controls who can access information