ECS 235B Module 15
Precise and Secure Policies
Types of Mechanisms

- Secure
- Precise
- Broad

Set of reachable states
Set of secure states
Secure, Precise Mechanisms

• Can one devise a procedure for developing a mechanism that is both secure and precise?
 • Consider confidentiality policies only here
 • Integrity policies produce same result

• Program a function with multiple inputs and one output
 • Let \(p \) be a function \(p: I_1 \times \ldots \times I_n \rightarrow R \). Then \(p \) is a program with \(n \) inputs \(i_k \in I_k, 1 \leq k \leq n \), and one output \(r \in R \)
Programs and Postulates

• Observability Postulate: the output of a function encodes all available information about its inputs
 • Covert channels considered part of the output

• Example: authentication function
 • Inputs name, password; output Good or Bad
 • If name invalid, immediately print Bad; else access database
 • Problem: time output of Bad, can determine if name valid
 • This means timing is part of output
Protection Mechanism

• Let \(p \) be a function \(p: I_1 \times \ldots \times I_n \to R \). A protection mechanism \(m \) is a function

\[
m: I_1 \times \ldots \times I_n \to R \cup E
\]

for which, when \(i_k \in I_k, 1 \leq k \leq n \), either

- \(m(i_1, \ldots, i_n) = p(i_1, \ldots, i_n) \) or
- \(m(i_1, \ldots, i_n) \in E \).

• \(E \) is set of error outputs
 - In above example, \(E = \{ \text{“Password Database Missing”}, \text{“Password Database Locked”} \} \)
Confidentiality Policy

• Confidentiality policy for program p says which inputs can be revealed
 • Formally, for $p: I_1 \times ... \times I_n \rightarrow R$, it is a function $c: I_1 \times ... \times I_n \rightarrow A$, where
 $A \subseteq I_1 \times ... \times I_n$
 • A is set of inputs available to observer

• Security mechanism is function
 $$m: I_1 \times ... \times I_n \rightarrow R \cup E$$
 • m is secure if and only if $\exists m': A \rightarrow R \cup E$ such that,
 $$\forall i_k \in I_k, 1 \leq k \leq n, m(i_1, ..., i_n) = m'(c(i_1, ..., i_n))$$
 • m returns values consistent with c
Examples

• $c(i_1, ..., i_n) = C$, a constant
 • Deny observer any information (output does not vary with inputs)

• $c(i_1, ..., i_n) = (i_1, ..., i_n)$, and $m' = m$
 • Allow observer full access to information

• $c(i_1, ..., i_n) = i_1$
 • Allow observer information about first input but no information about other inputs.
Precision

• Security policy may be over-restrictive
 • Precision measures how over-restrictive

• m_1, m_2 distinct protection mechanisms for program p under policy c
 • m_1 as precise as m_2 ($m_1 \approx m_2$) if, for all inputs i_1, \ldots, i_n,
 $m_2(i_1, \ldots, i_n) = p(i_1, \ldots, i_n) \Rightarrow m_1(i_1, \ldots, i_n) = p(i_1, \ldots, i_n)$
 • m_1 more precise than m_2 ($m_1 \sim m_2$) if there is an input (i_1', \ldots, i_n') such that
 $m_1(i_1', \ldots, i_n') = p(i_1', \ldots, i_n')$ and $m_2(i_1', \ldots, i_n') \neq p(i_1', \ldots, i_n')$.
Combining Mechanisms

• \(m_1, m_2 \) protection mechanisms

• \(m_3 = m_1 \cup m_2 \)
 • For inputs on which \(m_1 \) and \(m_2 \) return same value as \(p \), \(m_3 \) does also; otherwise, \(m_3 \) returns same value as \(m_1 \)

• Theorem: if \(m_1, m_2 \) secure, then \(m_3 \) secure
 • Also, \(m_3 \approx m_1 \) and \(m_3 \approx m_2 \)
 • Follows from definitions of secure, precise, and \(m_3 \)
Existence Theorem

• For any program p and security policy c, there exists a precise, secure mechanism m^* such that, for all secure mechanisms m associated with p and c, $m^* \approx m$
 • Maximally precise mechanism
 • Ensures security
 • Minimizes number of denials of legitimate actions
Lack of Effective Procedure

• There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
 • Sketch of proof: let policy c be constant function, and p compute function $T(x)$. Assume $T(x) = 0$. Consider program q, where

```plaintext
z = p;
if \ z = 0 \ then \ y := 1 \ else \ y := 2;
halt;
```
Rest of Sketch

- \(m \) associated with \(q \), \(y \) value of \(m \), \(z \) output of \(p \) corresponding to \(T(x) \)
- \(\forall x \ [T(x) = 0] \rightarrow m(x) = 1 \)
- \(\exists x' \ [T(x') \neq 0] \rightarrow m(x) = 2 \) or \(m(x) \) undefined
- If you can determine \(m \), you can determine whether \(T(x) = 0 \) for all \(x \)
- Determines some information about input (is it 0?)
- Contradicts constancy of \(c \).
- Therefore no such procedure exists