ECS 235B Module 15 Precise and Secure Policies

Types of Mechanisms

Secure, Precise Mechanisms

- Can one devise a procedure for developing a mechanism that is both secure and precise?
 - Consider confidentiality policies only here
 - Integrity policies produce same result
- Program a function with multiple inputs and one output
 - Let p be a function $p: I_1 \times ... \times I_n \to R$. Then p is a program with n inputs $i_k \in I_k$, $1 \le k \le n$, and one output $r \in R$

Programs and Postulates

- Observability Postulate: the output of a function encodes all available information about its inputs
 - Covert channels considered part of the output
- Example: authentication function
 - Inputs name, password; output Good or Bad
 - If name invalid, immediately print Bad; else access database
 - Problem: time output of Bad, can determine if name valid
 - This means timing is part of output

Protection Mechanism

• Let p be a function $p: I_1 \times ... \times I_n \rightarrow R$. A protection mechanism m is a function

$$m: I_1 \times ... \times I_n \rightarrow R \cup E$$

for which, when $i_k \in I_k$, $1 \le k \le n$, either

- $m(i_1, ..., i_n) = p(i_1, ..., i_n)$ or
- $m(i_1, ..., i_n) \in E$.
- E is set of error outputs
 - In above example, E = { "Password Database Missing", "Password Database Locked" }

Confidentiality Policy

- Confidentiality policy for program p says which inputs can be revealed
 - Formally, for $p: I_1 \times ... \times I_n \to R$, it is a function $c: I_1 \times ... \times I_n \to A$, where $A \subseteq I_1 \times ... \times I_n$
 - A is set of inputs available to observer
- Security mechanism is function

$$m: I_1 \times ... \times I_n \rightarrow R \cup E$$

- m is secure if and only if $\exists m': A \rightarrow R \cup E$ such that, $\forall i_k \in I_k, 1 \le k \le n, m(i_1, ..., i_n) = m'(c(i_1, ..., i_n))$
- m returns values consistent with c

Examples

- $c(i_1, ..., i_n) = C$, a constant
 - Deny observer any information (output does not vary with inputs)
- $c(i_1, ..., i_n) = (i_1, ..., i_n)$, and m' = m
 - Allow observer full access to information
- $c(i_1, ..., i_n) = i_1$
 - Allow observer information about first input but no information about other inputs.

Precision

- Security policy may be over-restrictive
 - Precision measures how over-restrictive
- m_1 , m_2 distinct protection mechanisms for program p under policy c
 - m_1 as precise as m_2 ($m_1 \approx m_2$) if, for all inputs $i_1, ..., i_n$, $m_2(i_1, ..., i_n) = p(i_1, ..., i_n) \Rightarrow m_1(i_1, ..., i_n) = p(i_1, ..., i_n)$
 - m_1 more precise than m_2 ($m_1 \sim m_2$) if there is an input $(i_1', ..., i_n')$ such that $m_1(i_1', ..., i_n') = p(i_1', ..., i_n')$ and $m_2(i_1', ..., i_n') \neq p(i_1', ..., i_n')$.

Combining Mechanisms

- m_1 , m_2 protection mechanisms
- $m_3 = m_1 \cup m_2$
 - For inputs on which m_1 and m_2 return same value as p, m_3 does also; otherwise, m_3 returns same value as m_1
- Theorem: if m_1 , m_2 secure, then m_3 secure
 - Also, $m_3 \approx m_1$ and $m_3 \approx m_2$
 - Follows from definitions of secure, precise, and m_3

Existence Theorem

- For any program p and security policy c, there exists a precise, secure mechanism m^* such that, for all secure mechanisms m associated with p and c, $m^* \approx m$
 - Maximally precise mechanism
 - Ensures security
 - Minimizes number of denials of legitimate actions

Lack of Effective Procedure

- There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
 - Sketch of proof: let policy c be constant function, and p compute function T(x). Assume T(x) = 0. Consider program q, where

```
z = p;
if z = 0 then y := 1 else y := 2;
halt;
```

Rest of Sketch

- m associated with q, y value of m, z output of p corresponding to T(x)
- $\forall x [T(x) = 0] \rightarrow m(x) = 1$
- $\exists x' [T(x') \neq 0] \rightarrow m(x) = 2 \text{ or } m(x) \text{ undefined}$
- If you can determine m, you can determine whether T(x) = 0 for all x
- Determines some information about input (is it 0?)
- Contradicts constancy of c.
- Therefore no such procedure exists