ECS 235B Module 16 Lattices

Overview

- Lattices used to analyze several models
- Bell-LaPadula confidentiality model
- Biba integrity model
- A lattice consists of a set and a relation
- Relation must partially order set
- Relation orders some, but not all, elements of set

Sets and Relations

- S set, $R: S \times S$ relation
- If $a, b \in S$, and $(a, b) \in R$, write $a R b$
- Example
- $I=\{1,2,3\} ; R$ is \leq
- $R=\{(1,1),(1,2),(1,3),(2,2),(2,3),(3,3)\}$
- So we write $1 \leq 2$ and $3 \leq 3$ but not $3 \leq 2$

Relation Properties

- Reflexive
- For all $a \in S, a R a$
- On I, \leq is reflexive as $1 \leq 1,2 \leq 2,3 \leq 3$
- Antisymmetric
- For all $a, b \in S, a R b \wedge b R a \Rightarrow a=b$
- On I, \leq is antisymmetric as $1 \leq x$ and $x \leq 1$ means $x=1$
- Transitive
- For all $a, b, c \in S, a R b \wedge b R c \Rightarrow a R c$
- On I, \leq is transitive as $1 \leq 2$ and $2 \leq 3$ means $1 \leq 3$

Example

- \mathbb{C} set of complex numbers
- $a \in \mathbb{C} \Rightarrow a=a_{\mathrm{R}}+a_{1}$, where a_{R}, a_{1} integers
- $a \leq_{\mathrm{C}} b$ if, and only if, $a_{\mathrm{R}} \leq b_{\mathrm{R}}$ and $a_{1} \leq b_{1}$
- $a \leq_{c} b$ is reflexive, antisymmetric, transitive
- As \leq is over integers, and a_{R}, a_{1} are integers

Partial Ordering

- Relation R orders some members of set S
- If all ordered, it's a total ordering
- Example
- \leq on integers is total ordering
- $\leq_{\mathbb{C}}$ is partial ordering on \mathbb{C}
- Neither $3+5 i \leq_{\mathbb{C}} 4+2 i$ nor $4+2 i \leq_{\mathbb{C}} 3+5 i$ holds

Upper Bounds

- For $a, b \in S$, if u in S with $a R u$, bRu exists, then u is an upper bound
- A least upper bound if there is no $t \in S$ such that $a R t, b R t$, and $t R u$
- Example
- For $1+5 i, 2+4 i \in \mathbb{C}$
- Some upper bounds are $2+5 i, 3+8 i$, and $9+100 i$
- Least upper bound is $2+5 i$

Lower Bounds

- For $a, b \in S$, if / in S with IRa, IRb exists, then / is a lower bound
- A greatest lower bound if there is no $t \in S$ such that $t R a, t R b$, and $/ R t$
- Example
- For $1+5 i, 2+4 i \in \mathbb{C}$
- Some lower bounds are $0,-1+2 i, 1+1 i$, and $1+4 i$
- Greatest lower bound is $1+4 i$

Lattices

- Set S, relation R
- R is reflexive, antisymmetric, transitive on elements of S
- For every $s, t \in S$, there exists a greatest lower bound under R
- For every $s, t \in S$, there exists a least upper bound under R

Example

- $S=\{0,1,2\} ; R=\leq$ is a lattice
- R is clearly reflexive, antisymmetric, transitive on elements of S
- Least upper bound of any two elements of S is the greater of the elements
- Greatest lower bound of any two elements of S is the lesser of the elements

Picture

Arrows represent \leq; this forms a total ordering

Example

- $\mathbb{C}, \leq_{\mathbb{C}}$ form a lattice
- $\leq_{\mathbb{C}}$ is reflexive, antisymmetric, and transitive
- Shown earlier
- Least upper bound for a and b :
- $c_{\mathrm{R}}=\max \left(a_{\mathrm{R}}, b_{\mathrm{R}}\right), c_{\mathrm{I}}=\max \left(a_{1}, b_{1}\right)$; then $c=c_{\mathrm{R}}+c_{\mathrm{I}} i$
- Greatest lower bound for a and b :
- $c_{\mathrm{R}}=\min \left(a_{\mathrm{R}}, b_{\mathrm{R}}\right), c_{\mathrm{I}}=\min \left(a_{1}, b_{1}\right)$; then $c=c_{\mathrm{R}}+c_{\mathrm{I}} i$

Picture

Arrows represent $\leq_{\mathbb{C}}$

