ECS 235B Module 18 Bell-LaPadula Model

Formal Model Definitions

- S subjects, O objects, P rights
- Defined rights: \underline{r} read, \underline{a} write, \underline{w} read/write, \underline{e} empty
- M set of possible access control matrices
- C set of clearances/classifications, K set of categories, $L=C \times K$ set of security levels
- $F=\left\{\left(f_{s}, f_{o}, f_{c}\right)\right\}$
- $f_{s}(s)$ maximum security level of subject s
- $f_{c}(s)$ current security level of subject s
- $f_{o}(o)$ security level of object o

More Definitions

- Hierarchy functions $\mathrm{H}: \mathrm{O} \rightarrow \mathbb{P}(O)$
- Requirements

1. $o_{i} \neq o_{j} \Rightarrow h\left(o_{i}\right) \cap h\left(o_{j}\right)=\varnothing$
2. There is no set $\left\{o_{1}, \ldots, o_{k}\right\} \subseteq O$ such that for $i=1, \ldots, k, o_{i+1} \in h\left(o_{i}\right)$ and $o_{k+1}=o_{1}$.

- Example
- Tree hierarchy; take $h(o)$ to be the set of children of o
- No two objects have any common children (\#1)
- There are no loops in the tree (\#2)

States and Requests

- V set of states
- Each state is (b, m, f, h)
- b is like m, but excludes rights not allowed by f
- R set of requests for access
- D set of outcomes
- \underline{y} allowed, \underline{n} not allowed, $\underline{i} i l l e g a l, ~ o ~ e r r o r ~$
- W set of actions of the system
- $W \subseteq R \times D \times V \times V$

History

- $X=R^{N}$ set of sequences of requests
- $Y=D^{N}$ set of sequences of decisions
- $Z=V^{N}$ set of sequences of states
- Interpretation
- At time $t \in N$, system is in state $z_{t-1} \in V$; request $x_{t} \in R$ causes system to make decision $y_{t} \in D$, transitioning the system into a (possibly new) state $z_{t} \in V$
- System representation: $\Sigma\left(R, D, W, z_{0}\right) \in X \times Y \times Z$
- $(x, y, z) \in \Sigma\left(R, D, W, z_{0}\right)$ iff $\left(x_{t}, y_{t}, z_{t-1}, z_{t}\right) \in W$ for all t
- (x, y, z) called an appearance of $\Sigma\left(R, D, W, z_{0}\right)$

Example

- $S=\{s\}, O=\{o\}, P=\{\underline{r}, \underline{w}\}$
- $C=\{$ High, Low $\}, K=\{$ All $\}$
- For every $f \in F$, either $f_{c}(s)=(\operatorname{High},\{$ All $\})$ or $f_{c}(s)=($ Low, $\{$ All $\})$
- Initial State:
- $b_{1}=\{(s, o, \underline{r})\}, m_{1} \in M$ gives s read access over o, and for $f_{1} \in F, f_{c, 1}(s)=$ (High, $\{A l l\}), f_{o, 1}(o)=$ (Low, $\{$ All $\}$)
- Call this state $v_{0}=\left(b_{1}, m_{1}, f_{1}, h_{1}\right) \in V$.

First Transition

- Now suppose in state $v_{0}: S=\left\{s, s^{\prime}\right\}$
- Suppose $f_{s, 1}\left(s^{\prime}\right)=($ Low, $\{$ All $\}), m_{1} \in M$ gives s read access over o and s^{\prime} write access to o
- As s^{\prime} not written to $o, b_{1}=\{(s, o, \underline{r})\}$
- $r_{1}: s^{\prime}$ requests to write to o :
- System decides $d_{1}=y$ (as m_{1} gives it that right, and $f_{s, 1}\left(s^{\prime}\right)=f_{o}(o)$)
- New state $v_{1}=\left(b_{2}, m_{1}, f_{1}, h_{1}\right) \in V$
- $b_{2}=\left\{(s, o, \underline{r}),\left(s^{\prime}, o, \underline{\mathrm{w}}\right)\right\}$
- Here, $x=\left(r_{1}\right), y=(\mathrm{y}), z=\left(v_{0}, v_{1}\right)$

Second Transition

- Current state $v_{1}=\left(b_{2}, m_{1}, f_{1}, h_{1}\right) \in V$
- $b_{2}=\left\{(s, o, \underline{r}),\left(s^{\prime}, o, \underline{w}\right)\right\}$
- $f_{c, 1}(s)=($ High, $\{$ All $\}), f_{o, 1}(o)=($ Low, $\{$ All $\})$
- r_{2} : s requests to write to 0 :
- System decides $d_{2}=\underline{\mathrm{n}}\left(\operatorname{as} f_{c, 1}(s) \operatorname{dom} f_{o, 1}(o)\right)$
- New state $v_{2}=\left(b_{2}, m_{1}, f_{1}, h_{1}\right) \in V$
- $b_{2}=\left\{(s, o, \underline{r}),\left(s^{\prime}, o, \underline{w}\right)\right\}$
- So, $x=\left(r_{1}, r_{2}\right), y=(\mathrm{y}, \underline{\mathrm{n}}), z=\left(v_{0}, v_{1}, v_{2}\right)$, where $v_{2}=v_{1}$

Basic Security Theorem

- Define action, secure formally
- Using a bit of foreshadowing for "secure"
- Restate properties formally
- Simple security condition
- *-property
- Discretionary security property
- State conditions for properties to hold
- State Basic Security Theorem

Action

- A request and decision that causes the system to move from one state to another
- Final state may be the same as initial state
- $\left(r, d, v, v^{\prime}\right) \in R \times D \times V \times V$ is an action of $\Sigma\left(R, D, W, z_{0}\right)$ iff there is an $(x, y, z) \in \Sigma\left(R, D, W, z_{0}\right)$ and a $t \in N$ such that $\left(r, d, v, v^{\prime}\right)=\left(x_{t}, y_{t}, z_{t}, z_{t-1}\right)$
- Request r made when system in state v^{\prime}; decision d moves system into (possibly the same) state v
- Correspondence with $\left(x_{t}, y_{t}, z_{t}, z_{t-1}\right)$ makes states, requests, part of a sequence

Simple Security Condition

- $(s, o, p) \in S \times O \times P$ satisfies the simple security condition relative to f (written ssc rel f) iff one of the following holds:

1. $p=\underline{\mathrm{e}}$ or $p=\underline{\mathrm{a}}$
2. $p=\underline{r}$ or $p=\underline{\mathrm{w}}$ and $f_{s}(s) \operatorname{dom} f_{o}(o)$

- Holds vacuously if rights do not involve reading
- If all elements of b satisfy ssc rel f, then state satisfies simple security condition
- If all states satisfy simple security condition, system satisfies simple security condition

Necessary and Sufficient

- $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the simple security condition for any secure state z_{0} iff for every action $\left(r, d,(b, m, f, h),\left(b^{\prime}, m^{\prime}, f^{\prime}, h^{\prime}\right)\right), W$ satisfies
- Every $(s, o, p) \in b-b^{\prime}$ satisfies ssc relf
- Every $(s, o, p) \in b^{\prime}$ that does not satisfy ssc rel f is not in b
- Note: "secure" means z_{0} satisfies ssc rel f
- First says every (s, o, p) added satisfies ssc rel f; second says any (s, o, p) in b^{\prime} that does not satisfy ssc rel f is deleted

*-Property

- $b\left(s: p_{1}, \ldots, p_{n}\right)$ set of all objects that s has p_{1}, \ldots, p_{n} access to
- \quad State (b, m, f, h) satisfies the *-property iff for each $s \in S$ the following hold:

1. $b(s: \underline{a}) \neq \varnothing \Rightarrow\left[\forall o \in b(s: \underline{a})\left[f_{0}(o) \operatorname{dom} f_{c}(s)\right]\right]$
2. $b(s: \underline{w}) \neq \varnothing \Rightarrow\left[\forall o \in b(s: \underline{w})\left[f_{o}(o)=f_{c}(s)\right]\right]$
3. $b(s: \underline{r}) \neq \varnothing \Rightarrow\left[\forall o \in b(s: \underline{r})\left[f_{c}(s) \operatorname{dom} f_{o}(o)\right]\right]$

- Idea: for writing, object dominates subject; for reading, subject dominates object

*-Property

- If a subset S^{\prime} of subjects satisfy *-property, then *-property satisfied relative to $S^{\prime} \subseteq S$
- Note: tempting to conclude that *-property includes simple security condition, but this is false
- See condition placed on \underline{w} right for each
- Note simple security condition uses $f_{s} ;{ }^{*}$-property uses f_{c}

Necessary and Sufficient

- $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the *-property relative to $S^{\prime} \subseteq S$ for any secure state z_{0} iff for every action ($\left.r, d,(b, m, f, h),\left(b^{\prime}, m^{\prime}, f^{\prime}, h^{\prime}\right)\right), W$ satisfies the following for every $s \in S^{\prime}$
- Every $(s, o, p) \in b-b^{\prime}$ satisfies the *-property relative to S^{\prime}
- Every $(s, o, p) \in b^{\prime}$ that does not satisfy the *-property relative to S^{\prime} is not in b
- Note: "secure" means z_{0} satisfies *-property relative to S^{\prime}
- First says every (s, o, p) added satisfies the *-property relative to S^{\prime}; second says any (s, o, p) in b^{\prime} that does not satisfy the *-property relative to S^{\prime} is deleted

Discretionary Security Property

- State (b, m, f, h) satisfies the discretionary security property iff, for each $(s, o, p) \in b$, then $p \in m[s, o]$
- Idea: if s can read o, then it must have rights to do so in the access control matrix m
- This is the discretionary access control part of the model
- The other two properties are the mandatory access control parts of the model

Necessary and Sufficient

- $\Sigma\left(R, D, W, z_{0}\right)$ satisfies the ds-property for any secure state z_{0} iff, for every action $\left(r, d,(b, m, f, h),\left(b^{\prime}, m^{\prime}, f^{\prime}, h^{\prime}\right)\right), W$ satisfies:
- Every $(s, o, p) \in b-b^{\prime}$ satisfies the ds-property
- Every $(s, o, p) \in b^{\prime}$ that does not satisfy the ds-property is not in b
- Note: "secure" means z_{0} satisfies ds-property
- First says every (s, o, p) added satisfies the ds-property; second says any (s, o, p) in b^{\prime} that does not satisfy the ds-property is deleted

Secure

- A state is secure iff it satisfies:
- Simple security condition
- *-property
- Discretionary security property
- A system is secure if the only states it can enter satisfy the above 3 properties

Basic Security Theorem

- $\Sigma\left(R, D, W, z_{0}\right)$ is a secure system if z_{0} is a secure state and W satisfies the conditions for the preceding three theorems
- The theorems are on the slides titled "Necessary and Sufficient"

