ECS 235B Module 21 The Controversy and System Z

Controversy

- McLean:
 - "value of the BST is much overrated since there is a great deal more to security than it captures. Further, what is captured by the BST is so trivial that it is hard to imagine a realistic security model for which it does not hold."
 - Basis: given assumptions known to be non-secure, BST can prove a nonsecure system to be secure

+-Property

- State (*b*, *m*, *f*, *h*) satisfies the ⁺-property iff for each *s* ∈ *S* the following hold:
 - 1. $b(s: \underline{a}) \neq \emptyset \Longrightarrow [\forall o \in b(s: \underline{a}) [f_c(s) dom f_o(o)]]$
 - 2. $b(s: \underline{w}) \neq \emptyset \Longrightarrow [\forall o \in b(s: \underline{w}) [f_o(o) = f_c(s)]]$
 - 3. $b(s: \underline{r}) \neq \emptyset \Rightarrow [\forall o \in b(s: \underline{r}) [f_c(s) dom f_o(o)]]$
- Idea: for writing, subject dominates object; for reading, subject also dominates object
- Differs from *-property in that the mandatory condition for writing is reversed
 - For *-property, it's object dominates subject

Analogues

The following two theorems can be proved

- $\Sigma(R, D, W, z_0)$ satisfies the +-property relative to $S' \subseteq S$ for any secure state z_0 iff for every action (r, d, (b, m, f, h), (b', m', f', h')), W satisfies the following for every $s \in S'$
 - Every $(s, o, p) \in b b'$ satisfies the +-property relative to S'
 - Every $(s, o, p) \in b'$ that does not satisfy the +-property relative to S' is not in b
- $\Sigma(R, D, W, z_0)$ is a secure system if z_0 is a secure state and W satisfies the conditions for the simple security condition, the +-property, and the ds-property.

Problem

- This system is *clearly* non-secure!
 - Information flows from higher to lower because of the +-property

Discussion

- Role of Basic Security Theorem is to demonstrate that rules preserve security
- Key question: what is security?
 - Bell-LaPadula defines it in terms of 3 properties (simple security condition, *property, discretionary security property)
 - Theorems are assertions about these properties
 - Rules describe changes to a *particular* system instantiating the model
 - Showing system is secure requires proving rules preserve these 3 properties

Rules and Model

- Nature of rules is irrelevant to model
- Model treats "security" as axiomatic
- Policy defines "security"
 - This instantiates the model
 - Policy reflects the requirements of the systems
- McLean's definition differs from Bell-LaPadula
 - ... and is not suitable for a confidentiality policy
- Analysts cannot prove "security" definition is appropriate through the model

System Z

- System supporting weak tranquility
- On *any* request, system downgrades *all* subjects and objects to lowest level and adds the requested access permission
 - Let initial state satisfy all 3 properties
 - Successive states also satisfy all 3 properties
- Clearly not secure
 - On first request, everyone can read everything

Reformulation of Secure Action

- Given state that satisfies the 3 properties, the action transforms the system into a state that satisfies these properties and eliminates any accesses present in the transformed state that would violate the property in the initial state, then the action is secure
- BST holds with these modified versions of the 3 properties

Reconsider System Z

- Initial state:
 - subject s, object o
 - *C* = {High, Low}, *K* = {AII}
- Take:
 - $f_c(s) = (Low, {AII}), f_o(o) = (High, {AII})$
 - $m[s, o] = \{ \underline{w} \}$, and $b = \{ (s, o, \underline{w}) \}$.
- *s* requests <u>r</u> access to *o*
- Now:
 - *f*′_{*o*}(*o*) = (Low, {AII})
 - $(s, o, \underline{r}) \in b', m'[s, o] = \{\underline{r}, \underline{w}\}$

Non-Secure System Z

- As (s, o, <u>r</u>) ∈ b' − b and f_o(o) dom f_c(s), access added that was illegal in previous state
 - Under the new version of the Basic Security Theorem, System Z is not secure
 - Under the old version of the Basic Security Theorem, as f'_c(s) = f'_o(o), System Z is secure

Response: What Is Modeling?

- Two types of models
 - 1. Abstract physical phenomenon to fundamental properties
 - 2. Begin with axioms and construct a structure to examine the effects of those axioms
- Bell-LaPadula Model developed as a model in the first sense
 - McLean assumes it was developed as a model in the second sense

Reconciling System Z

- Different definitions of security create different results
 - Under one (original definition in Bell-LaPadula Model), System Z is secure
 - Under other (McLean's definition), System Z is not secure