
ECS 235B Module 26
State-Based Availability Models

Module 26 ECS 235B, Foundations of Computer and Information Security 1

State-Based Model (Millen)

• Unlike constraint-based model, allows a maximum waiting time to be
specified
• Based on resource allocation system, denial of service base that

enforces its policies

Module 26 ECS 235B, Foundations of Computer and Information Security 2

Resource Allocation System Model

• R set of resource types
• For each r ∈ R, number of resource units (capacity, c(r)) is constant; a

process can hold a unit for a maximum holding time m(r)
• P set of processes
• For each p ∈ P, state is running or sleeping
• When allocated a resource, process is running
• Multiple process can be in running state simultaneously
• Each p has upper bound it can be in running state before being interrupted, if

only by CPU quantum q
• Example: if CPU considered a resource, m(CPU) = q

Module 26 ECS 235B, Foundations of Computer and Information Security 3

Allocation Matrix

• Rows represent processes; columns represent resources
• A: P × R ➝ ℕ is matrix
• For p ∈ P, r ∈ R, Ap(r) is number of resource units of type r acquired by p
• As at most c(r) of resource type r exist, at most that many can be allocated at

any time

R1: The system cannot allocate more instances of a resource type than
it has:

(∀r ∈ R)[∑p∈PAp(r) ≤ c(r)]

Module 26 ECS 235B, Foundations of Computer and Information Security 4

More About Resources

• T: P ➝ ℕ is system time when resource assignment was last changed
• Think of it as a time vector, each element belonging to one process

• QS: P × R ➝ ℕ is matrix of required resources for each process, not
including the resources it already holds
• So QS

p(r) means the number of units of resource type r that process p may need to
complete

• QT: P × R ➝ ℕ is matrix of how much longer each process p needs the units
of resource r
• Predicates running(p) true if p is in running state; asleep(p) true otherwise
R2: A currently running process must not require additional resources to run

running(p) ⇒ (∀r ∈ R)[QS
p(r) = 0]

Module 26 ECS 235B, Foundations of Computer and Information Security 5

States, State Transitions

• Current state of system is (A, T, QS, QT)
• State transition (A, T, QS, QT) ➝ (Aʹ, Tʹ, QSʹ, QTʹ)
• We only care about treansitions due to allocation, deallocation of resources

• Three relevant types of transitions
• Deactivation transition: running(p) ➝ asleepʹ(p); process stops execution
• Activation transition: asleep(p) ➝ runningʹ(p); process starts or resumes

execution
• Reallocation transition: transition in which p has resource allocation changed;

can only occur when asleep(p)

Module 26 ECS 235B, Foundations of Computer and Information Security 6

Constraints

R3: Resource allocation does not affect allocations of a running
process:

(running(p) ∧ running’(p)) ⇒ (Apʹ = Ap)
R4: T(p) changes only when resource allocation of p changes:

(Apʹ(CPU) = Ap(CPU)) ⇒ (Tʹ(p) = T(p))
R5: Updates in time vector increase value of element being updated:

(Apʹ(CPU) ≠ Ap(CPU)) => (Tʹ(p) > T(p))

Module 26 ECS 235B, Foundations of Computer and Information Security 7

Constraints

R6: When p reallocated resources, allocation matrix updated before p
resumes execution:

asleep(p) ⇒ QS
pʹ = QS

p + Ap – Apʹ
R7: When a process is not running, the time it needs resources does
not change:

asleep(p) ⇒ QT
pʹ = QT

p
R8: when a process ceases to execute, the only resource it must
surrender is the CPU:
(running(p) ∧ asleep’(p)) ⇒ Apʹ(r) = Ap(r)–1 if r = CPU
(running(p) ∧ asleep’(p)) ⇒ Apʹ(r) = Ap(r) otherwise

Module 26 ECS 235B, Foundations of Computer and Information Security 8

Resource Allocation System

• A system in a state (A, T, QS, QT) such that:
• State satisfies constraints R1, R2
• All state transitions constrained to meet R3-R8

Module 26 ECS 235B, Foundations of Computer and Information Security 9

Denial of Service Protection Base (DPB)

• A mechanism that is tamperproof, cannot be prevented from
operating, and guarantees authorized access to resources it controls
• Four parts:
• Resource allocation system (see earlier)
• Resource monitor
• Waiting time policy
• User agreement (see earlier); constraints apply to changes in allocation when

process transitions from running(p) to asleep(p)

Module 26 ECS 235B, Foundations of Computer and Information Security 10

Resource Monitor

• Controls allocation, deallocation of resources and the timing
• QS

p is feasible if (∀i)[QS
p(ri) + Ap(ri) ≤ c(ri)] ∧ QS

p(CPU) ≤ 1
• If the total number of resources it will be allocated will always be no more

than the capacity of that resource, and no more than 1 CPU is requested

• Tp is feasible if (∀i)[Tp(ri) ≤ max(ri)]
• Here, max(ri) max time a process must wait for its needed allocation of units

of resource type i

Module 26 ECS 235B, Foundations of Computer and Information Security 11

Waiting Time Policy

• Let σ = (A, T, QS, QT)
• Example finite waiting time policy:

(∀p, σ)(∃σʹ)[runningʹ(p) ∧ (Tʹ(p) ≥ T(p))]
• For every process and state, there is a future state in which p is executing and

has been allocated resources

• Example maximum waiting time policy:
(∃M)(∀p, σ)(∃σʹ)[runningʹ(p) ∧ (0 < Tʹ(p) – T(p) ≤ M)]

• There is an upper bound M to how long it takes every process to reach a
future state in which it is executing and has been allocated resources

Module 26 ECS 235B, Foundations of Computer and Information Security 12

Two Additional Constraints

In addition to all these, a DPB must satisfy these constraints:
1. Each process satisfying user agreement constraints will progress in a

way that satisfies the waiting time policy
2. No resource other than the CPU is deallocated from a process

unless that resource is no longer needed
(∀i)[ri ≠ CPU ∧ Ap(ri) ≠ 0 ∧ Apʹ(ri) = 0] ⇒ QT

p(ri) = 0

Module 26 ECS 235B, Foundations of Computer and Information Security 13

Example: DPB

• Assume system has 1 CPU
• Assume maximum waiting time policy in place
• 3 parts to user agreement:
• QS

p, Tp are feasible
• Process in running state executes for a minimum amount of time before it

transitions to a non-running state
• If process requires resource type, and enters a non-running state, the time it

needs the resource for is decreased by the amount of time it was in the
previous running state; that is,

QT
p ≠ 0 ∧ running(p) ∧ asleep’(p) ⇒ (∀r∈R)[QT

p(r) ≤ max(0, maxr QT
p(r)–(Tʹ(p)–T(p)))]

Module 26 ECS 235B, Foundations of Computer and Information Security 14

Example: System

• n processes, round robin scheduler with quantum q
• Initially no process has any resources
• Resource monitor selects process p to give resources to
• p executes until QT

p = 0 or monitor concludes QS
p or Tp is not feasible

• Goal: show there will be no denial of service in this system because
a) no resource ri is deallocated from p for which QS

p is feasible until QT
p = 0;

and
b) there is a maximum time for each round robin cycle

Module 26 ECS 235B, Foundations of Computer and Information Security 15

Claim (a)

• Before p selected, no process has any resources allocated to it
• So next process with QS

p and Tp feasible is selected
• It runs until it enters the asleep state or q, whichever is shorter
• If in asleep state, process is done
• If q, monitor gives p another quantum of running time; this repeats until QT

p = 0, and
then p needs no more resources

• Let m(r) be maximum time any process will hold resources of type r
• Let M(r) = maxr m(r)

• As QS
p and Tp feasible, M upper bound for all elements of QT

p
• d = min(q, minimum time before p transitions to asleep state); exists because a

process in running state executes for a minimum amount of time before it transitions
to a non-running state

Module 26 ECS 235B, Foundations of Computer and Information Security 16

Claim (a) (con’t)

• As QS
p and Tp feasible, M upper bound for all elements of QT

p

• d = min(q, minimum time before p transitions to asleep state)
• Exists because a process in running state executes for a minimum amount of

time before it transitions to a non-running state

• At end of each quantum, mʹ(r) = m(r) – d
• By third part of user agreement

• So after floor(M/d + 1) quanta, QT
p = 0

• So no resources deallocated until (∀i) QT
p(ri) = 0

Module 26 ECS 235B, Foundations of Computer and Information Security 17

Claim (b)

• ta is time between resource monitor beginning cycle and when it has
allocated required resources to p
• Resource monitor then allocates CPU resource to p; call this time tCPU
• Done between each quantum

• When p completes, all its resources deallocated; this takes time td

• As QS
p and Tp feasible, time needed to run p, including time to

deallocate all resources, is:
ta + floor(M/d + 1)(q + tCPU) + td

• So for n processes, maximum time cycle will take is n times this
• Thus, there is a maximum time for each round robin cycle

Module 26 ECS 235B, Foundations of Computer and Information Security 18

