ECS 235B Module 32 Traducement

Case Study: Traducement

Designed to model electronic recordation

- What is recordation?
- Why do it electronically?
- Models and recordation
- Example: approach and problems

Recordation

- Recording title to real property
 - Real estate purchases
- Recording liens, etc.
 - Mortgage holders and such
- In California, County Recorders do this
 - No standards other than statutory ones
 - No state office oversees them

Goals of Recordation

- Establish title
- Establish priority of liens, etc.
- Protection of Public
 - Permanence of records
 - Fraud prevention (no secret conveyance, etc.)
- Recording triggers release of funds
 - It's the official record of property ownership

Requirements of a Solution

- A signed document cannot be altered (although new signatures may be appended);
- 2. A document may require multiple signatures;
- A document submitted to the recorder's office may be revoked by any signatory until the document is recorded, but is no longer eligible for additional signatures;
- 4. The recorder may only append information to the document (*i.e.*, sign it); and
- 5. If the document is recorded, it becomes a public record immutable to all parties.

How to Record Something

Submission

Presentation of documents to recorder

Validation

- Check for conformance with statutory requirements
- Calculate fees

Storage

- Record documents, index and provide locators
- Filming and/or imaging the documents to create archival record

Return documents

Modeling the Process

- Confidentiality not an issue
 - Exception: some fees may be
- Integrity a *critical* issue
 - Originator must be able to file document
 - Document must be correct, legal
 - Document immutable
- Availability may, may not be issue

Electronic Commerce

- Model many are trying to use, but there are substantial differences:
 - Emphasis on privacy inappropriate
 - Nothing exchanged (no non-fungible property involved)
 - Not immutable; you can erase an electronic transaction
 - Does not establish title
 - Does not deal with liens

Traducement

- Model designed for electronic recordation
 - a signed document cannot be altered (although new signatures may be appended)
 - a document may require multiple signatures
 - a document submitted to the recorder's office may be revoked by any signatory until the document is recorded, but additional signatures may not be added
 - the recorder may only append information to the document (i.e., sign it)
 - if the document is recorded, it becomes a public record immutable to all parties.

Key Notions

- Publishing document
 - Cannot modify it further
 - Making it available to larger community
- Signing document
 - Associates authors with documents
- Common to legal documents
 - Unusual in other documents

Entities

- Subjects
 - Authors contribute in some way to the document to be filed
 - Recorders attest to the completion of document, converting it into official record
- Objects
 - Documents to be filed

Definitions

- Author set AS
 - Attribute of object that specifies set of users who wrote to object
 - No author can be removed from author set
- Signer set SS
 - Attribute that specifies users who approve the object, contents
 - Any reader can add themselves to this set

Create Rule

- User *u* creates object *o*:
 - o indelibly stamped with creation time
 - $o'(AS) = \{ u \}$
 - $o'(SS) = \emptyset$

Alteration Rule

- User *u* alters object *o*:
 - $o'(AS) = \{u\} \cup o(AS)$
 - o'(SS) = ∅

Signature Rule

- User *u* signs object *o*:
 - o'(AS) = o(AS)
 - $o'(SS) = \{u\} \cup o(SS)$

Example

- Peter drafts document
 - $d(AS) = \{ \text{ Peter } \}, d(SS) = \emptyset$
- Paul approves
 - *d*(*AS*) = { Peter }, *d*(*SS*) = { Paul }
- Mary makes some changes
 - $d(AS) = \{ \text{ Peter, Mary } \}, d(SS) = \emptyset$
- Everyone says it's fine
 - *d*(*AS*) = { Peter, Mary }
 - *d*(*SS*) = { Peter, Paul, Mary}

Copy Rule

- User *u* copies object *o* to *O*:
 - O'(AS) = o(AS)
 - O'(SS) = o(SS)

Proposition

• A user is in the *signer set* of an object if and only if the document has not been modified since the user was added to the signer set.

Proof

(⇒) Let $u \in o(SS)$. Creation, alteration rules set $o(SS) = \emptyset$; by induction, not used. Signature, copy do not alter o(SS).

Proof (con't)

Proof

(\Leftarrow) Assume o not modified since u added to o(SS).

- Signature or copy rule applied
- Signature rule adds to o(SS); does not delete any elements
- Copy rule copies original o(SS); does not delete any elements
- Induction gives the result

Preconditions

- 1. Each document in the system has an author set list identifying all users who created or modified that document
- 2. Each document in the system has a signer set list identifying all users who approve that document.

- If a system satisfies the preconditions, then the system still satisfies the preconditions after any sequence of applications of the creation, alteration, signature, and copy rules.
- *Proof*: Let a system satisfy preconditions in state s_0 . Apply one of the rules to transition to state s_1 .

Applying Rules

- Create rule
 - New document created; o(AS) is creator only (#1 met) and o(SS) empty (#2 met)
- Alteration rule
 - Add user to o(AS), so o(AS) contains only new user, members of old o(AS) (#1 met); o(SS) cleared, so no-one has approved of it (#2 met)

Applying Rules

- Signature rule
 - Document not changed so o(AS) not changed (#1 met); add signer to o(SS), as signer approves of (unchanged) document (#2 met)
- Copy rule
 - Create new instance of document, so no changes (#1 met); signers approved
 of content and no changes to that (#2 met)

Basic Security Theorem

- Analogue to Bell-LaPadula BST
- Define secure:
 - System meeting preconditions is secure
- Idea of theorem:
 - Begin in secure state
 - Apply transitions (rules)
 - Resulting system in secure state

Let R be a rule, s be a state of a system, and s' be the state obtained by applying R to s. Let the system in state s satisfy Preconditions 1 and 2, and let S0 and S1 be the set of objects in states S3 and S3, respectively. Then:

- 1.If there is an object o' such that
 - a) *o'* ∉ *O*
 - b) $o' \in O'$
 - c) $O' = O \cup \{o'\}$
 - d) $o'(AS) = \{u\}$ for some subject u
 - e) $o'(SS) = \emptyset$

then s' satisfies Preconditions 1 and 2.

- 2. If there is an object $o \in O$ such that
 - a) $o'(AS) = \{u\} \cup o(AS)$ for some subject u
 - b) $o'(SS) = \emptyset$

then s' satisfies Preconditions 1 and 2.

- 3. If there is an object $o \in O$ such that
- a) o'(AS) = o(AS)
- b) $o'(SS) = \{u\} \cup o(SS)$ for some subject u then s' satisfies Preconditions 1 and 2.

- 4. If there is an object $x' \in O'$ such that:
 - a) $x' \notin O$
 - b) there is an object $o \in O$
 - c) x'(AS) = o(AS)
 - d) x'(SS) = o(SS)

then s' satisfies Preconditions 1 and 2.

Proof (First Case Only)

- s satisfies Preconditions 1 and 2
- For each $o \in O$, o(AS) identifies all users who created or modified o
- For each $o \in O$, o(SS) identifies all users who approve o
- $o' \notin O$ but $o' \in O' \Rightarrow o'$ created
 - Let *u* be the creator

Proof (con't)

- $o'(AS) = \{u\}$
 - o'(AS) contains user who created o'
- o'(AS) identifies all users who created, modified o', satisfying precondition 1
- $o'(SS) = \emptyset$
 - o' just created, so no-one yet approves its contents
- o'(SS) identifies all users who approved it, satisfying precondition

Naming

- How do you identify authors, signers?
 - Important as if two have the same name, you lose accountability
- Leads to *domain rule*: the authors contained in the author group shall be given unique names
 - Problem is understood, lots of approaches to solving it (X.509 certificate hierarchies, etc.)
 - Call these fully qualified names (FQN)

Authorship Integrity

- Definition of terms
 - *domain* collection of systems
 - subdomain an inferior domain
 - parent domain a superior domain

Each domain has its own administrative authority

Note: theorems hold as long as signers use FQNs

Goal: Record Information

An object o is recorded when

- 1. $o(AS) \subseteq o(SS)$; and
- 2. the recorder's office executes a recordation transformation on the object.

Designated repository: stores a copy of every recorded object in its domain.

Review Requirements

- A signed document cannot be altered (although new signatures may be appended);
 - See alteration rule
- 2. A document may require multiple signatures;
 - See signature rule
- 3. A document submitted to the recorder's office may be revoked by any signatory until the document is recorded, but is no longer eligible for additional signatures;
 - See alteration rule
 - Definition of recorder's transformation

Review Requirements

- 4. The recorder may only append information to the document (*i.e.*, sign it); and
- 5. If the document is recorded, it becomes a public record immutable to all parties.
 - Definition of recorder's transformation

Now What?

- Can identify characteristics of a solution
 - If designing a solution, it must have those characteristics
- Know what to look for on a claimed solution

Basic Approach In Use

Assumptions

- Trusted relationship between author of images and recording authority
 - Encryption, acknowledgements
 - NB: Acknowledgement is "standard form wherein the author of the image acknowledges in writing that the documents submitted have original seals and signatures"

Submission of Documents

- How do you know the document received was the same as the one intended to be recorded?
 - Threat: I change the document in transit, before, or after it was sent
 - Digital signature assures document unchanged since signed and binds document to a public key
 - Public key infrastructure (PKI) binds public keys to principles (users)

Questions

- Is the user signing lawfully authorized to sign?
 - Albert di Salvo gets a real estate license ...
- Is the user requesting the signature the one authorized to request the signature?
 - Sharing passwords, sharing a system ... spoofing
- Is document changed between the user requesting the signature and the document being signed?
 - Virus-like programs change it first (use Adobe Photoshop-like program to change stamps, for example), unbeknownst to the user

More Questions

- Is the right public key used to sign the document?
 - PKI assumes certificates, binding keys to users, are issued to the right people
- Did the submitter change the document without the other party's consent?
 - On paper, this can usually be detected
 - Electronically, no way, unless original document digitally signed (see above)

Validation and Storage

- Document arrives at server
 - Stored in one area; validated here
 - When recorded, moved to permanent area
 - Burned onto CD or some other WORM media
- Operating system, web servers, other supporting applications provide security

Questions

- What is the system connected to?
 - Where can attackers come from?
- How well will the operating system withstand penetration attempts?
 - Lots of vulnerabilities in all software, OSes
- What operational security procedures are in place to maintain the security?
 - Bad procedures can weaken the best system
 - Who installs security patches, keeps up to date with new attacks, holes?

More Questions

- Is digital signature stored with document?
 - On the validation server
 - If not, it can be changed there
 - On the archive server
 - If not, no way to revalidate that document was same as sent

Return Documents

(Read this as retrieval of documents)

- Someone requests a title or copies of liens
 - Retrieval system gets it and presents it

Questions

How do you know it gets the right one?

Example: three documents about your house

- The first (real) one says you have paid off all liens on your house.
- The second (bogus) one puts a lien on your house.
- The third (bogus) one forecloses on your house.
- Which one is returned?

Solving the Problem

- AB 578 directs CA Attorney General to establish standards for electronic recordation systems
 - Includes security testing
- National efforts under way, too

The Problem With Solutions

- Vendor: "This system is designed and built using standard industrial software engineering techniques"
- Customer: "We installed and run this following the vendor's instructions"
- Took 5 minutes to gain illicit, unauthorized access to system
- Took 10 minutes to compromise system's functioning so it reported incorrect results
- Took 20 minutes to find all "hidden" passwords embedded in programs

Moral: current software and systems are not secure!