
ECS 235B Module 34
Policy Composition

Module 34 ECS 235B, Foundations of Computer and Information Security 1

Composition of Policies

• Two organizations have two security policies
• They merge
• How do they combine security policies to create one security policy?
• Can they create a coherent, consistent security policy?

Module 34 ECS 235B, Foundations of Computer and Information Security 2

The Problem

• Single system with 2 users
• Each has own virtual machine
• Holly at system high, Lara at system low so they cannot communicate directly

• CPU shared between VMs based on load
• Forms a covert channel through which Holly, Lara can communicate

Module 34 ECS 235B, Foundations of Computer and Information Security 3

Example Protocol

• Holly, Lara agree:
• Begin at noon
• Lara will sample CPU utilization every minute
• To send 1 bit, Holly runs program

• Raises CPU utilization to over 60%
• To send 0 bit, Holly does not run program

• CPU utilization will be under 40%

• Not “writing” in traditional sense
• But information flows from Holly to Lara

Module 34 ECS 235B, Foundations of Computer and Information Security 4

Policy vs. Mechanism

• Can be hard to separate these
• In the abstract: CPU forms channel along which information can be

transmitted
• Violates *-property
• Not “writing” in traditional sense

• Conclusion:
• Bell-LaPadula model does not give sufficient conditions to prevent

communication, or
• System is improperly abstracted; need a better definition of “writing”

Module 34 ECS 235B, Foundations of Computer and Information Security 5

Composition of Bell-LaPadula

• Why?
• Some standards require secure components to be connected to form secure

(distributed, networked) system

• Question
• Under what conditions is this secure?

• Assumptions
• Implementation of systems precise with respect to each system’s security

policy

Module 34 ECS 235B, Foundations of Computer and Information Security 6

Issues

• Compose the lattices
• What is relationship among labels?
• If the same, trivial
• If different, new lattice must reflect the relationships among the levels

Module 34 ECS 235B, Foundations of Computer and Information Security 7

Example

(HIGH, { EAST, WEST })

(HIGH, { EAST }) (HIGH, { WEST })

(LOW)

(TS, { EAST, SOUTH })

(TS, { EAST }) (TS, { SOUTH })

(S, { EAST, SOUTH })

(S, { EAST }) (S, { SOUTH })

(LOW)

Module 34 ECS 235B, Foundations of Computer and Information Security 8

Analysis

• Assume S < HIGH < TS
• Assume SOUTH, EAST, WEST different
• Resulting lattice has:
• 4 clearances (LOW < S < HIGH < TS)
• 3 categories (SOUTH, EAST, WEST)

Module 34 ECS 235B, Foundations of Computer and Information Security 9

Same Policies

• If we can change policies that components must meet, composition is
trivial (as above)
• If we cannot, we must show composition meets the same policy as

that of components; this can be very hard

Module 34 ECS 235B, Foundations of Computer and Information Security 10

Different Policies

• What does “secure” now mean?
• Which policy (components) dominates?
• Possible principles:
• Any access allowed by policy of a component must be allowed by composition

of components (autonomy)
• Any access forbidden by policy of a component must be forbidden by

composition of components (security)

Module 34 ECS 235B, Foundations of Computer and Information Security 11

Implications

• Composite system satisfies security policy of components as
components’ policies take precedence
• If something neither allowed nor forbidden by principles, then:
• Allow it (Gong & Qian)
• Disallow it (Fail-Safe Defaults)

Module 34 ECS 235B, Foundations of Computer and Information Security 12

Example

• System X: Bob can’t access Alice’s files
• System Y: Eve, Lilith can access each other’s files
• Composition policy:
• Bob can access Eve’s files
• Lilith can access Alice’s files

• Question: can Bob access Lilith’s files?

Module 34 ECS 235B, Foundations of Computer and Information Security 13

Solution (Gong & Qian)

• Notation:
• (a, b): a can read b’s files
• AS(x): access set of system x

• Set-up:
• AS(X) = Æ
• AS(Y) = { (Eve, Lilith), (Lilith, Eve) }
• AS(XÈY) = { (Bob, Eve), (Lilith, Alice), (Eve, Lilith), (Lilith, Eve) }

Module 34 ECS 235B, Foundations of Computer and Information Security 14

Solution (Gong & Qian)

• Compute transitive closure of AS(XÈY):
• AS(XÈY)+ = { (Bob, Eve), (Bob, Lilith), (Bob, Alice), (Eve, Lilith), (Eve, Alice),
 (Lilith, Eve), (Lilith, Alice) }

• Delete accesses conflicting with policies of components:
• Delete (Bob, Alice)

• (Bob, Lilith) in set, so Bob can access Lilith’s files

Module 34 ECS 235B, Foundations of Computer and Information Security 15

Idea

• Composition of policies allows accesses not mentioned by original
policies
• Generate all possible allowed accesses
• Computation of transitive closure

• Eliminate forbidden accesses
• Removal of accesses disallowed by individual access policies

• Everything else is allowed
• Note: determining if access allowed is of polynomial complexity

Module 34 ECS 235B, Foundations of Computer and Information Security 16

