ECS 235B Module 35 Introduction to Noninterference

Interference

- Think of it as something used in communication
- Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it - communication
- Plays role of writing (interfering) and reading (detecting the interference)

Model

- System as state machine
- Subjects $S=\left\{s_{i}\right\}$
- States $\Sigma=\left\{\sigma_{i}\right\}$
- Outputs $O=\left\{o_{i}\right\}$
- Commands $Z=\left\{z_{i}\right\}$
- State transition commands $C=S \times Z$
- Note: no inputs
- Encode either as selection of commands or in state transition commands

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
- Describes effect of executing command c in state σ
- Output function $P: C \times \Sigma \rightarrow 0$
- Output of machine when executing command c in state σ
- Initial state is σ_{0}

Example: 2-Bit Machine

- Users Heidi (high), Lucy (low)
- 2 bits of state, H (high) and L (low)
- System state is (H, L) where H, L are 0,1
- 2 commands: xor0, xor1 do xor with 0,1
- Operations affect both state bits regardless of whether Heidi or Lucy issues it

Example: 2-bit Machine

- $S=\{$ Heidi, Lucy $\}$
- $\Sigma=\{(0,0),(0,1),(1,0),(1,1)\}$
- C = \{xor0, xor1 \}

Input States (H, L)				
				$(0,0)$
xor0	$(0,1)$	$(1,0)$	$(1,1)$	
xor1	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
	$(1,0)$	$(0,1)$	$(0,0)$	

Outputs and States

- T is inductive in first argument, as

$$
T\left(c_{0}, \sigma_{0}\right)=\sigma_{1} ; T\left(c_{i+1}, \sigma_{i+1}\right)=T\left(c_{i+1}, T\left(c_{i}, \sigma_{i}\right)\right)
$$

- Let C^{*} be set of possible sequences of commands in C
- $T^{*}: C^{*} \times \Sigma \rightarrow \Sigma$ and

$$
c_{s}=c_{0} \ldots c_{n} \Rightarrow T^{*}\left(c_{s}, \sigma_{i}\right)=T\left(c_{n}, \ldots, T\left(c_{0}, \sigma_{i}\right) \ldots\right)
$$

- P similar; define $P^{*}: C^{*} \times \Sigma \rightarrow O$ similarly

Projection

- $T^{*}\left(c_{s}, \sigma_{i}\right)$ sequence of state transitions
- $P^{*}\left(c_{s}, \sigma_{i}\right)$ corresponding outputs
- $\operatorname{proj}\left(s, c_{s}, \sigma_{i}\right)$ set of outputs in $P^{*}\left(c_{s}, \sigma_{i}\right)$ that subject s authorized to see
- In same order as they occur in $P^{*}\left(c_{s}, \sigma_{i}\right)$
- Projection of outputs for s
- Intuition: list of outputs after removing outputs that s cannot see

Purge

- $G \subseteq S, G$ a group of subjects
- $A \subseteq Z, A$ a set of commands
- $\pi_{G}\left(c_{s}\right)$ subsequence of c_{s} with all elements $(s, z), s \in G$ deleted
- $\pi_{A}\left(c_{s}\right)$ subsequence of c_{s} with all elements $(s, z), z \in A$ deleted
- $\pi_{G, A}\left(c_{s}\right)$ subsequence of c_{s} with all elements $(s, z), s \in G$ and $z \in A$ deleted

Example: 2-bit Machine

- Let $\sigma_{0}=(0,1)$
- 3 commands applied:
- Heidi applies xorO
- Lucy applies xor1
- Heidi applies xor1
- $c_{s}=($ (Heidi, xor0), (Lucy, xor1), (Heidi, xor1))
- Output is 011001
- Shorthand for sequence $(0,1)(1,0)(0,1)$

Example

- $\operatorname{proj}\left(\right.$ Heidi, $\left.c_{s}, \sigma_{0}\right)=011001$
- $\operatorname{proj}\left(\right.$ Lucy, $\left.c_{s}, \sigma_{0}\right)=101$

- $\pi_{\text {Lucy,xor1 }}\left(c_{s}\right)=$ (Heidi, xor0), (Heidi, xor1)
- $\pi_{\text {Heidi }}\left(c_{s}\right)=($ Lucy, xor1)
- $\pi_{\text {Lucy,xor0 }}\left(c_{s}\right)=(H e i d i$, xor0), (Lucy, xor1), (Heidi, xor1)
- $\pi_{\text {Heidi, xor0 }}\left(c_{s}\right)=\pi_{\text {xor0 }}\left(c_{s}\right)=($ Lucy, xor1), (Heidi, xor1)
- $\pi_{\text {Heidi,xor1 }}\left(c_{s}\right)=$ (Heidi, xorO), (Lucy, xor1)
- $\pi_{\text {xor1 }}\left(c_{s}\right)=(H e i d i, x o r 0)$

Noninterference

- Intuition: If set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference
- Formally: $G, G^{\prime} \subseteq S, G \neq G^{\prime} ; A \subseteq Z$; users in G executing commands in A are noninterfering with users in G^{\prime} iff for all $c_{s} \in C^{*}$, and for all $s \in G^{\prime}$,

$$
\operatorname{proj}\left(s, c_{s}, \sigma_{i}\right)=\operatorname{proj}\left(s, \pi_{G, A}\left(c_{s}\right), \sigma_{i}\right)
$$

- Written $A, G: \mid G^{\prime}$

Example: 2-Bit Machine

- Let $c_{s}=((H e i d i, x o r 0),(L u c y, x o r 1),(H e i d i, x o r 1))$ and $\sigma_{0}=(0,1)$
- As before
- Take $G=\{$ Heidi $\}, G^{\prime}=\{$ Lucy $\}, A=\varnothing$
- $\pi_{\text {Heidi }}\left(c_{s}\right)=($ Lucy, xor1)
- So proj(Lucy, $\left.\pi_{\text {Heidi }}\left(c_{s}\right), \sigma_{0}\right)=0$
- $\operatorname{proj}\left(\right.$ Lucy, $\left.c_{s}, \sigma_{0}\right)=101$
- So \{ Heidi \} :| \{ Lucy \} is false
- Makes sense; commands issued to change H bit also affect L bit

Example

- Same as before, but Heidi's commands affect H bit only, Lucy's the L bit only
- Output is $0_{H} 0_{L} 1_{H}$
- $\pi_{\text {Heidi }}\left(c_{s}\right)=($ Lucy, xor1)
- So $\operatorname{proj}\left(\right.$ Lucy, $\left.\pi_{\text {Heidi }}\left(c_{s}\right), \sigma_{0}\right)=0$
- $\operatorname{proj}\left(\right.$ Lucy, $\left.c_{s}, \sigma_{0}\right)=0$
- So \{ Heidi \} :| \{ Lucy \} is true
- Makes sense; commands issued to change H bit now do not affect L bit

