ECS 235B Module 35 Introduction to Noninterference

Interference

- Think of it as something used in communication
 - Holly/Lara example: Holly interferes with the CPU utilization, and Lara detects it — communication
- Plays role of writing (interfering) and reading (detecting the interference)

Model

- System as state machine
 - Subjects $S = \{ s_i \}$
 - States $\Sigma = \{ \sigma_i \}$
 - Outputs *O* = { *o_i* }
 - Commands $Z = \{ z_i \}$
 - State transition commands $C = S \times Z$
- Note: no inputs
 - Encode either as selection of commands or in state transition commands

Functions

- State transition function $T: C \times \Sigma \rightarrow \Sigma$
 - Describes effect of executing command \emph{c} in state σ
- Output function $P: C \times \Sigma \rightarrow O$
 - Output of machine when executing command \emph{c} in state σ
- Initial state is σ_{0}

Example: 2-Bit Machine

- Users Heidi (high), Lucy (low)
- 2 bits of state, H (high) and L (low)
 - System state is (*H*, *L*) where *H*, *L* are 0, 1
- 2 commands: *xor0, xor1* do *xor* with 0, 1
 - Operations affect *both* state bits regardless of whether Heidi or Lucy issues it

Example: 2-bit Machine

- *S* = { Heidi, Lucy }
- $\Sigma = \{ (0,0), (0,1), (1,0), (1,1) \}$
- *C* = { *xor0*, *xor1* }

	Input States (H, L)			
	(0,0)	(0,1)	(1,0)	(1,1)
xor0	(0,0)	(0,1)	(1,0)	(1,1)
xor1	(1,1)	(1,0)	(0,1)	(0,0)

Outputs and States

- *T* is inductive in first argument, as $T(c_0, \sigma_0) = \sigma_1$; $T(c_{i+1}, \sigma_{i+1}) = T(c_{i+1}, T(c_i, \sigma_i))$
- Let C* be set of possible sequences of commands in C
- $T^*: C^* \times \Sigma \to \Sigma$ and $c_s = c_0...c_n \Rightarrow T^*(c_s, \sigma_i) = T(c_n, ..., T(c_0, \sigma_i)...)$
- *P* similar; define $P^*: C^* \times \Sigma \rightarrow O$ similarly

Projection

- $T^*(c_s, \sigma_i)$ sequence of state transitions
- *P**(*c_s*, σ_{*i*}) corresponding outputs
- *proj*(*s*, c_s , σ_i) set of outputs in $P^*(c_s, \sigma_i)$ that subject *s* authorized to see
 - In same order as they occur in $P^*(c_s, \sigma_i)$
 - Projection of outputs for s
- Intuition: list of outputs after removing outputs that *s* cannot see

Purge

- $G \subseteq S$, G a group of subjects
- $A \subseteq Z$, A a set of commands
- $\pi_G(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ deleted
- $\pi_A(c_s)$ subsequence of c_s with all elements (*s*,*z*), $z \in A$ deleted
- $\pi_{G,A}(c_s)$ subsequence of c_s with all elements (s,z), $s \in G$ and $z \in A$ deleted

Example: 2-bit Machine

- Let $\sigma_0 = (0, 1)$
- 3 commands applied:
 - Heidi applies xor0
 - Lucy applies *xor1*
 - Heidi applies xor1
- $c_s = ($ (Heidi, xor0), (Lucy, xor1), (Heidi, xor1))
- Output is 011001
 - Shorthand for sequence (0,1) (1,0) (0,1)

Example

- *proj*(Heidi, c_s , σ_0) = 011001
- *proj*(Lucy, c_s , σ_0) = 101
- $\pi_{Lucy}(c_s) =$ (Heidi, *xor0*), (Heidi, *xor1*)
- $\pi_{Lucy,xor1}(c_s) = (Heidi, xor0), (Heidi, xor1)$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$
- $\pi_{Lucy,xor0}(c_s) =$ (Heidi, xor0), (Lucy, xor1), (Heidi, xor1)
- $\pi_{\text{Heidi},xor0}(c_s) = \pi_{xor0}(c_s) = (\text{Lucy}, xor1), (\text{Heidi}, xor1)$
- $\pi_{\text{Heidi,xor1}}(c_s) = (\text{Heidi, xor0}), (\text{Lucy, xor1})$
- $\pi_{xor1}(c_s) = (\text{Heidi}, xor0)$

Noninterference

- Intuition: If set of outputs Lucy can see corresponds to set of inputs she can see, there is no interference
- Formally: $G, G' \subseteq S, G \neq G'; A \subseteq Z$; users in G executing commands in A are *noninterfering* with users in G' iff for all $c_s \in C^*$, and for all $s \in G'$, $proj(s, c_s, \sigma_i) = proj(s, \pi_{G,A}(c_s), \sigma_i)$
 - Written *A*,*G* :| *G*'

Example: 2-Bit Machine

- Let c_s = ((Heidi, xor0), (Lucy, xor1), (Heidi, xor1)) and σ₀ = (0, 1)
 As before
- Take $G = \{ \text{Heidi} \}, G' = \{ \text{Lucy} \}, A = \emptyset$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy, xor1})$
 - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s)$, σ_0) = 0
- *proj*(Lucy, c_s , σ_0) = 101
- So { Heidi } : | { Lucy } is false
 - Makes sense; commands issued to change *H* bit also affect *L* bit

Example

- Same as before, but Heidi's commands affect H bit only, Lucy's the L bit only
- Output is $0_H 0_L 1_H$
- $\pi_{\text{Heidi}}(c_s) = (\text{Lucy}, xor1)$
 - So *proj*(Lucy, $\pi_{\text{Heidi}}(c_s)$, σ_0) = 0
- *proj*(Lucy, c_s , σ_0) = 0
- So { Heidi } : | { Lucy } is true
 - Makes sense; commands issued to change *H* bit now do not affect *L* bit