ECS 235B Module 36
Security Policy and the Unwinding Theorem
Security Policy

• Partitions systems into authorized, unauthorized states
• Authorized states have no forbidden interferences
• Hence a *security policy* is a set of noninterference assertions
 • See previous definition
Alternative Development

• System X is a set of protection domains $D = \{ d_1, \ldots, d_n \}$
• When command c executed, it is executed in protection domain $\text{dom}(c)$
• Give alternate versions of definitions shown previously
Security Policy

- $D = \{ d_1, ..., d_n \}$, d_i a protection domain
- $r: D \times D$ a reflexive relation
- Then r defines a security policy
- Intuition: defines how information can flow around a system
 - $d_i rd_j$ means info can flow from d_i to d_j
 - $d_i rd_i$ as info can flow within a domain
Projection Function

• π' analogue of π, earlier
• Commands, subjects absorbed into protection domains
• $d \in D, c \in C, c_s \in C^*$
• $\pi'_d(\nu) = \nu$
• $\pi'_d(c_sc) = \pi'_d(c_sc)$ if $\text{dom}(c)\text{rd}$
• $\pi'_d(c_sc) = \pi'_d(c_s)$ otherwise
• Intuition: if executing c interferes with d, then c is visible; otherwise, as if c never executed
Noninterference-Secure

• System has set of protection domains \(D \)
• System is noninterference-secure with respect to policy \(r \) if
 \[
P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))
\]
• Intuition: if executing \(c_s \) causes the same transitions for subjects in domain \(d \) as does its projection with respect to domain \(d \), then no information flows in violation of the policy
Output-Consistency

- $c \in C, \ dom(c) \in D$
- $\sim_{\text{dom}(c)}$ equivalence relation on states of system X
- $\sim_{\text{dom}(c)}$ output-consistent if
 $$\sigma_a \sim_{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)$$
- Intuition: states are output-consistent if for subjects in $\text{dom}(c)$, projections of outputs for both states after c are the same
Lemma

• Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$

• If \sim^d output-consistent, then system is noninterference-secure with respect to policy r
Proof

• \(d = \text{dom}(c) \) for \(c \in C \)

• By definition of output-consistent,

\[
T^*(c_s, \sigma_0) \sim^d T^*(\pi'_{d}(c_s), \sigma_0)
\]

implies

\[
P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_{d}(c_s), \sigma_0))
\]

• This is definition of noninterference-secure with respect to policy \(r \)
Unwinding Theorem

• Links security of sequences of state transition commands to security of individual state transition commands

• Allows you to show a system design is multilevel-secure by showing it matches specs from which certain lemmata derived
 • Says *nothing* about security of system, because of implementation, operation, *etc.* issues
Locally Respects

• r is a policy
• System X locally respects r if $\text{dom}(c)$ being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
• Intuition: when X locally respects r, applying c under policy r to system X has no effect on domain d
Transition-Consistent

• r policy, $d \in D$
• If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X is transition-consistent under r
• Intuition: command c does not affect equivalence of states under policy r
Theorem

- \(r \) policy, \(X \) system that is output consistent, transition consistent, and locally respects \(r \)
- Then \(X \) noninterference-secure with respect to policy \(r \)
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to \(r \) follows
Proof

Must show $\sigma_a \sim^d \sigma_b \Rightarrow T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$

- Induct on length of c_s
- Basis: if $c_s = \nu$, then $T^*(c_s, \sigma_a) = \sigma_a$ and $\pi'_d(\nu) = \nu$; claim holds
- Hypothesis: for $c_s = c_1 ... c_n$, $\sigma_a \sim^d \sigma_b \Rightarrow T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$
Induction Step

• Consider $c_{s}c_{n+1}$. Assume $\sigma_{a} \sim^{d} \sigma_{b}$ and look at $T^{*}(\pi'_{d}(c_{s}c_{n+1}), \sigma_{b})$

• 2 cases:
 • $dom(c_{n+1})rd$ holds
 • $dom(c_{n+1})rd$ does not hold
dom(c_{n+1})rd Holds

\[T^*(\pi'_d(c_sc_{n+1}), \sigma_b) = T^*(\pi'_d(c_{n+1}), \sigma_b) = T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b)) \]

- By definition of \(T^* \) and \(\pi'_d \)

\(\sigma_a \sim^d \sigma_b \Rightarrow T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b) \)
- As \(X \) transition-consistent

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b)) \]
- By transition-consistency and IH

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(\pi'_d(c_sc_{n+1}), \sigma_b) \]
- By substitution from earlier equality

\[T^*(c_sc_{n+1}, \sigma_a) \sim^d T^*(\pi'_d(c_sc_{n+1}), \sigma_b) \]
- By definition of \(T^* \)

proving hypothesis
$\text{dom}(c_{n+1})rd$ Does Not Hold

\[T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s), \sigma_b) \]

- By definition of π'_d

\[T^*(c_s, \sigma_a) = T^*(\pi'_d(c_s c_{n+1}), \sigma_b) \]

- By above and IH

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(c_s, \sigma_a) \]

- As X locally respects r, $\sigma \sim^d T(c_{n+1}, \sigma)$ for any σ

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(\pi'_d(c_s c_{n+1}), \sigma_b) \]

- Substituting back

proving hypothesis
Finishing Proof

• Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction,
 \[T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0) \]

• By previous lemma, as X (and so \sim^d) output consistent, then X is noninterference-secure with respect to policy r