ECS 235B Module 36 Security Policy and the Unwinding Theorem

Security Policy

- Partitions systems into authorized, unauthorized states
- Authorized states have no forbidden interferences
- Hence a security policy is a set of noninterference assertions
 - See previous definition

Alternative Development

- System X is a set of protection domains $D = \{ d_1, ..., d_n \}$
- When command c executed, it is executed in protection domain dom(c)
- Give alternate versions of definitions shown previously

Security Policy

- $D = \{ d_1, ..., d_n \}, d_i$ a protection domain
- $r: D \times D$ a reflexive relation
- Then r defines a security policy
- Intuition: defines how information can flow around a system
 - $d_i r d_j$ means info can flow from d_i to d_j
 - d_ird_i as info can flow within a domain

Projection Function

- π' analogue of π , earlier
- Commands, subjects absorbed into protection domains
- $d \in D$, $c \in C$, $c_s \in C^*$
- $\pi'_d(v) = v$
- $\pi'_d(c_s c) = \pi'_d(c_s)c$ if dom(c)rd
- $\pi'_d(c_s c) = \pi'_d(c_s)$ otherwise
- Intuition: if executing *c* interferes with *d*, then *c* is visible; otherwise, as if *c* never executed

Noninterference-Secure

- System has set of protection domains D
- System is noninterference-secure with respect to policy r if

$$P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$$

• Intuition: if executing c_s causes the same transitions for subjects in domain d as does its projection with respect to domain d, then no information flows in violation of the policy

Output-Consistency

- $c \in C$, $dom(c) \in D$
- $\sim^{dom(c)}$ equivalence relation on states of system X
- ~dom(c) output-consistent if

$$\sigma_a \sim dom(c) \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)$$

• Intuition: states are output-consistent if for subjects in dom(c), projections of outputs for both states after c are the same

Lemma

- Let $T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$ for $c \in C$
- If \sim^d output-consistent, then system is noninterference-secure with respect to policy r

Proof

- d = dom(c) for $c \in C$
- By definition of output-consistent,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

implies

$$P^*(c, T^*(c_s, \sigma_0)) = P^*(c, T^*(\pi'_d(c_s), \sigma_0))$$

• This is definition of noninterference-secure with respect to policy *r*

Unwinding Theorem

- Links security of sequences of state transition commands to security of individual state transition commands
- Allows you to show a system design is multilevel-secure by showing it matches specs from which certain lemmata derived
 - Says *nothing* about security of system, because of implementation, operation, *etc.* issues

Locally Respects

- *r* is a policy
- System X locally respects r if dom(c) being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: when X locally respects r, applying c under policy r to system X has no effect on domain d

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X is transition-consistent under r
- Intuition: command c does not affect equivalence of states under policy r

Theorem

- r policy, X system that is output consistent, transition consistent, and locally respects r
- Then X noninterference-secure with respect to policy r
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to *r* follows

Proof

Must show $\sigma_a \sim^d \sigma_b \Rightarrow T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$

- Induct on length of c_s
- Basis: if $c_s = v$, then $T^*(c_s, \sigma_a) = \sigma_a$ and $\pi'_d(v) = v$; claim holds
- Hypothesis: for $c_s = c_1 \dots c_n$, $\sigma_a \sim^d \sigma_b \Rightarrow T^*(c_s, \sigma_a) \sim^d T^*(\pi'_d(c_s), \sigma_b)$

Induction Step

- Consider $c_s c_{n+1}$. Assume $\sigma_a \sim^d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$
- 2 cases:
 - $dom(c_{n+1})rd$ holds
 - $dom(c_{n+1})rd$ does not hold

$dom(c_{n+1})rd$ Holds

$$T^*(\pi'_d(c_sc_{n+1}), \sigma_b) = T^*(\pi'_d(c_s)c_{n+1}, \sigma_b) = T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))$$

• By definition of T^* and π'_d

$$\sigma_a \sim^d \sigma_b \Rightarrow T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b)$$

• As X transition-consistent

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_s), \sigma_b))$$

By transition-consistency and IH

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

By substitution from earlier equality

$$T^*(c_s c_{n+1}, \sigma_a) \sim^d T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

• By definition of *T**

proving hypothesis

$dom(c_{n+1})rd$ Does Not Hold

$$T^*(\pi'_d(c_s c_{n+1}), \sigma_b) = T^*(\pi'_d(c_s), \sigma_b)$$

• By definition of π'_d

$$T^*(c_s, \sigma_a) = T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

By above and IH

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(c_s, \sigma_a)$$

• As X locally respects r, $\sigma \sim^d T(c_{n+1}, \sigma)$ for any σ

$$T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$$

Substituting back

proving hypothesis

Finishing Proof

• Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction,

$$T^*(c_s, \sigma_0) \sim^d T^*(\pi'_d(c_s), \sigma_0)$$

• By previous lemma, as X (and so \sim^d) output consistent, then X is noninterference-secure with respect to policy r