ECS 235B Module 37
Access Control Matrix Revisited
Access Control Matrix

• Example of interpretation
• Given: access control information
• Question: are given conditions enough to provide noninterference security?
• Assume: system in a particular state
 • Encapsulates values in ACM
ACM Model

• Objects $L = \{ l_1, ..., l_m \}$
 • Locations in memory

• Values $V = \{ v_1, ..., v_n \}$
 • Values that L can assume

• Set of states $\Sigma = \{ \sigma_1, ..., \sigma_k \}$

• Set of protection domains $D = \{ d_1, ..., d_j \}$
Functions

• **value**: $L \times \Sigma \rightarrow V$
 - returns value v stored in location l when system in state σ

• **read**: $D \rightarrow 2^V$
 - returns set of objects observable from domain d

• **write**: $D \rightarrow 2^V$
 - returns set of objects observable from domain d
Interpretation of ACM

• Functions represent ACM
 • Subject s in domain d, object o
 • $r \in A[s, o]$ if $o \in read(d)$
 • $w \in A[s, o]$ if $o \in write(d)$

• Equivalence relation:
 $$[\sigma_a \sim_{dom(c)} \sigma_b] \iff [\forall l_i \in read(d) \ [\ value(l_i, \sigma_a) = value(l_i, \sigma_b) \]]$$
 • You read exactly the same values from the same locations in both states
Enforcing Policy r

• 5 requirements
 • 3 general ones describing dependence of commands on rights over input and output
 • Hold for all ACMs and policies
 • 2 that are specific to some security policies
 • Hold for most policies
Enforcing Policy \(r \): General Requirements

- Output of command \(c \) executed in domain \(\text{dom}(c) \) depends only on values for which subjects in \(\text{dom}(c) \) have read access
 - \(\sigma_a \sim_{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b) \)
- If \(c \) changes \(l_i \), then \(c \) can only use values of objects in \(\text{read}(\text{dom}(c)) \) to determine new value
 - \[\sigma_a \sim_{\text{dom}(c)} \sigma_b \land \]
 - \((\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \lor \text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b)) \] \(\Rightarrow \)
 - \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b)) \)
- If \(c \) changes \(l_i \), then \(\text{dom}(c) \) provides subject executing \(c \) with write access to \(l_i \)
 - \(\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \Rightarrow l_i \in \text{write}(\text{dom}(c)) \)
Enforcing Policies r: Specific to Policy

- If domain u can interfere with domain v, then every object that can be read in u can also be read in v; so if object o cannot be read in u, but can be read in v and object o' in u can be read in v, then info flows from o to o', then to v

$$[u, v \in D \land urv] \Rightarrow \text{read}(u) \subseteq \text{read}(v)$$

- Subject s can write object o in v, subject s' can read o in u, then domain v can interfere with domain u

$$[l_i \in \text{read}(u) \land l_i \in \text{write}(v)] \Rightarrow vru$$
Theorem

• Let X be a system satisfying these five conditions. Then X is noninterference-secure with respect to r
• Proof: must show X output-consistent, locally respects r, transition-consistent
 • Then by unwinding theorem, this theorem holds
Output-Consistent

- Take equivalence relation to be \sim^d, first condition is definition of output-consistent
Locally Respects r

- Proof by contradiction: assume $(dom(c), d) \notin r$ but $\sigma_a \sim^d T(c, \sigma_a)$ does not hold
- Some object has value changed by c:
 \[
 \exists l_i \in \text{read}(d) \ [\text{value}(l_i, \sigma_a) \neq \text{value}(l_i, T(c, \sigma_a)) \]
 \]
- Condition 3: $l_i \in \text{write}(d)$
- Condition 5: $dom(c)rd$, contradiction
- So $\sigma_a \sim^d T(c, \sigma_a)$ holds, meaning X locally respects r
Transition Consistency

• Assume $\sigma_a \sim^d \sigma_b$
• Must show $\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))$ for $l_i \in \text{read}(d)$
• 3 cases dealing with change that c makes in l_i in states σ_a, σ_b
 • $\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a)$
 • $\text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b)$
 • Neither of the above two hold
Case 1: \(\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \)

- Condition 3: \(l_i \in \text{write}(\text{dom}(c)) \)
- As \(l_i \in \text{read}(d) \), condition 5 says \(\text{dom}(c) \text{rd} \)
- Condition 4: \(\text{read}(\text{dom}(c)) \subseteq \text{read}(d) \)
 - As \(\sigma_a \sim^d \sigma_b \), \(\sigma_a \sim^{\text{dom}(c)} \sigma_b \)
- Condition 2: \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b)) \)
- So \(T(c, \sigma_a) \sim^{\text{dom}(c)} T(c, \sigma_b) \), as desired
Case 2: \(\text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b) \)

- Condition 3: \(l_i \in \text{write}(\text{dom}(c)) \)
- As \(l_i \in \text{read}(d) \), condition 5 says \(\text{dom}(c)\text{rd} \)
- Condition 4: \(\text{read}(\text{dom}(c)) \subseteq \text{read}(d) \)
 - As \(\sigma_a \sim^d \sigma_b \), \(\sigma_a \sim^{\text{dom}(c)} \sigma_b \)
- Condition 2: \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b)) \)
- So \(T(c, \sigma_a) \sim^{\text{dom}(c)} T(c, \sigma_b) \), as desired
Case 3: Neither of the Previous Two Hold

• This means the two conditions below hold:
 • \(\text{value}(l, T(c, \sigma_a)) = \text{value}(l, \sigma_a) \)
 • \(\text{value}(l, T(c, \sigma_b)) = \text{value}(l, \sigma_b) \)

• Interpretation of \(\sigma_a \sim^d \sigma_b \) is:

 \[
 \text{for } l_i \in \text{read}(d), \text{value}(l_i, \sigma_a) = \text{value}(l_i, \sigma_b)
 \]

• So \(T(c, \sigma_a) \sim^d T(c, \sigma_b) \), as desired

In all 3 cases, \(\lambda \) transition-consistent