ECS 235B Module 38 Generalized Noninterference

Policies Changing Over Time

- Problem: previous analysis assumes static system
 - In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
 - cando(w, s, z) holds if s can execute z in current state
 - Condition noninterference on *cando*
 - If ¬cando(w, Lara, "write f"), Lara can't interfere with any other user by writing file f

Generalize Noninterference

- G ⊆ S set of subjects, A ⊆ Z set of commands, p predicate over elements of C*
- $c_s = (c_1, ..., c_n) \in C^*$
- $\pi''(v) = v$
- $\pi''((c_1, ..., c_n)) = (c_1', ..., c_n')$, where
 - $c_i' = v$ if $p(c_1', ..., c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command v
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier

Noninterference

- G, G' \subseteq S sets of subjects, $A \subseteq Z$ set of commands, p predicate over C*
- Users in *G* executing commands in *A* are *noninterfering with users in G'* under condition *p* iff, for all $c_s \in C^*$ and for all $s \in G'$, $proj(s, c_s, \sigma_i) = proj(s, \pi''(c_s), \sigma_i)$
 - Written *A*,*G* :| *G*′ **if** *p*

Example

- From earlier one, simple security policy based on noninterference: $\forall (s \in S) \forall (z \in Z) [\{z\}, \{s\} : | S \text{ if } \neg cando(w, s, z)]$
- If subject can't execute command (the ¬cando part) in any state, subject can't use that command to interfere with another subject

Another Example

- Consider system in which rights can be passed
 - *pass(s, z)* gives *s* right to execute *z*
 - $w_n = v_1, ..., v_n$ sequence of $v_i \in C^*$
 - $prev(w_n) = w_{n-1}; last(w_n) = v_n$

Policy

No subject s can use z to interfere if, in previous state, s did not have right to z, and no subject gave it to s
{ z }, { s } :| S

if $[\neg cando(prev(w), s, z) \land [cando(prev(w), s', pass(s, z)) \Rightarrow \neg last(w) = (s', pass(s, z))]$

Effect

- Suppose $s_1 \in S$ can execute $pass(s_2, z)$
- For all $w \in C^*$, cando(w, s_1 , pass(s_2 , z)) holds
- Initially, $cando(v, s_2, z)$ false
- Let $z' \in Z$ be such that (s_3, z') noninterfering with (s_2, z)
 - So for each w_n with $v_n = (s_3, z')$, $cando(w_n, s_2, z) = cando(w_{n-1}, s_2, z)$

Effect

- Then policy says for all s ∈ S proj(s, ((s₂, z), (s₁, pass(s₂, z)), (s₃, z'), (s₂, z)), σ_i) = proj(s, ((s₁, pass(s₂, z)), (s₃, z'), (s₂, z)), σ_i)
- So s₂'s first execution of z does not affect any subject's observation of system