Side Channels

A *side channel* is set of characteristics of a system, from which adversary can deduce confidential information about system or a competition

- Consider information to be derived as HIGH
- Consider information obtained from set of characteristics as LOW
- Attack is to deduce HIGH values from LOW values only
- Implication: attack works on systems not deducibly secure
Types of Side Channel Attacks

- *Passive*: Only observe system; deduce results from observations
- *Active*: Disrupt system in some way, causing it to react; deduce results from measurements of disruption
Example: Passive Attack

- Fast modular exponentiation:

  ```
  x := 1; atmp := a;
  for i := 0 to k-1 do begin
    if zi = 1 then
      x := (x * atmp) mod n;
      atmp := (atmp * atmp) mod n;
    end;
  result := x;
  ```

- If bit is 1, there are 2 multiplications; if it is 0, only one
- Extra multiplication takes time
- Can determine bits of the confidential exponent by measuring computation time
Example: Active Attack

Background

• Derive information from characteristics of memory accesses in chip
• Intel x86 caches
 • Each core has 2 levels, L1 and L2
 • Chip itself has third cache (L3 or LLC)
 • These are hierarchical: miss in L1 goes to L2, miss in L2 goes to L3, miss in L3 goes to memory
 • Caches are inclusive (so L3 has copies of data in L2 and L1)
• Processes share pages
Example: Active Attack

Phase 1
• Flush a set of bytes (called a *line*) from cache to clear it from all 3 caches
 • The disruption

Phase 2
• Wait until victim has chance to access that memory line

Phase 3
• Reload the line
 • If victim did this already, time is short as data comes from L3 cache
 • Otherwise time is longer as memory fetch is required
Example: Active Attack

What happened

• Used to trace execution of GnuPG on a physical machine
• Derived bits of a 2048 bit private key; max of 190 bits incorrect
• Repeated experiment on virtual machine
• Error rates increased
 • On one system, average error rate increased from 1.41 bits to 26.55 bits
 • On another system, average error rate increased from 25.12 bits to 66.12 bits
Model

Components

• *Primitive*: instantiation of computation
• *Device*: system doing the computation
• *Physical observable*: output being observed
• *Leakage function*: captures characteristics of side channel and mechanism to monitor the physical observables
• *Implementation function*: instantiation of both device, leakage function
• *Side channel adversary*: algorithm that queries implementation to get outputs from leakage function
Example

• First one (passive attack) divided leakage function into two parts
 • *Signal* was variations in output due to bit being derived
 • *Noise* was variations due to other factors (imprecisions in measurements, etc.)

• Second one (active attack) had leakage function acting in different ways
 • Physical machine: one chip used more advanced optimizations, thus more noise
 • Virtual machine: more variations due to extra computations running the virtual machines, hence more noise
Example: Electromagnetic Radiation

• CRT video display produces radiation that can be measured
• Using various equipment and a black and white TV, van Eck could reconstruct the images
 • Reconstructed pictures on video display units in buildings
• E-voting system with audio activated (as it would be for visually impaired voters) produced interference with sound from a nearby transistor radio
 • Testers believed changes in the sound due to the interference could be used to determine how voter was voting