ECS 235B Module 47 Entropy

Outline

- Random variables
- Joint probability
- Conditional probability
- Entropy (or uncertainty in bits)
- Joint entropy
- Conditional entropy
- Applying it to secrecy of ciphers

Random Variable

- Variable that represents outcome of an event
- X represents value from roll of a fair die; probability for rolling n : $p(X=n)=1 / 6$
- If die is loaded so 2 appears twice as often as other numbers, $p(X=2)=2 / 7$ and, for $n \neq 2, p(X=n)=1 / 7$
- Note: $p(X)$ means specific value for X doesn't matter
- Example: all values of X are equiprobable

Joint Probability

- Joint probability of X and $Y, p(X, Y)$, is probability that X and Y simultaneously assume particular values
- If X, Y independent, $p(X, Y)=p(X) p(Y)$
- Roll die, toss coin
- $p(X=3, Y=$ heads $)=p(X=3) p(Y=$ heads $)=1 / 6 \times 1 / 2=1 / 12$

Two Dependent Events

- $X=$ roll of red die, $Y=$ sum of red, blue die rolls

$$
\begin{array}{llll}
p(Y=2)=1 / 36 & p(Y=3)=2 / 36 & p(Y=4)=3 / 36 & p(Y=5)=4 / 36 \\
p(Y=6)=5 / 36 & p(Y=7)=6 / 36 & p(Y=8)=5 / 36 & p(Y=9)=4 / 36 \\
p(Y=10)=3 / 36 & p(Y=11)=2 / 36 & p(Y=12)=1 / 36 &
\end{array}
$$

- Formula:

$$
p(X=1, Y=11)=p(X=1) p(Y=11)=(1 / 6)(2 / 36)=1 / 108
$$

- But if the red die (X) rolls 1 , the most their sum (Y) can be is 7
- The problem is X and Y are dependent

Conditional Probability

- Conditional probability of X given $Y, p(X \mid Y)$, is probability that X takes on a particular value given Y has a particular value
- Continuing example ...
- $p(Y=7 \mid X=1)=1 / 6$
- $p(Y=7 \mid X=3)=1 / 6$

Relationship

- $p(X, Y)=p(X \mid Y) p(Y)=p(X) p(Y \mid X)$
- Example:

$$
p(X=3, Y=8)=p(X=3 \mid Y=8) p(Y=8)=(1 / 5)(5 / 36)=1 / 36
$$

- Note: if X, Y independent:

$$
p(X \mid Y)=p(X)
$$

Entropy

- Uncertainty of a value, as measured in bits
- Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
- Therefore entropy of X is $H(X)=1$
- Formal definition: random variable X, values x_{1}, \ldots, x_{n}; so
$\Sigma_{i} \mathrm{p}\left(X=x_{i}\right)=1$; then entropy is:

$$
H(X)=-\Sigma_{i} p\left(X=x_{i}\right) \lg p\left(X=x_{i}\right)
$$

Heads or Tails?

- $H(X)=-p(X=$ heads $) \lg p(X=$ heads $)-p(X=$ tails $) \lg p(X=$ tails $)$

$$
\begin{aligned}
& =-(1 / 2) \lg (1 / 2)-(1 / 2) \lg (1 / 2) \\
& =-(1 / 2)(-1)-(1 / 2)(-1)=1
\end{aligned}
$$

- Confirms previous intuitive result

n-Sided Fair Die

$$
H(X)=-\Sigma_{i} p\left(X=x_{i}\right) \lg p\left(X=x_{i}\right)
$$

As $p\left(X=x_{i}\right)=1 / n$, this becomes
$H(X)=-\Sigma_{i}(1 / n) \lg (1 / n)=-n(1 / n)(-\lg n)$
SO
$H(X)=\lg n$
which is the number of bits in n, as expected

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?

- $w_{1}=$ Ann,$w_{2}=$ Pam,$w_{3}=$ Paul
- $p\left(W=w_{1}\right)=p\left(W=w_{2}\right)=2 / 5, p\left(W=W_{3}\right)=1 / 5$
- So $H(W)=-\Sigma_{i} p\left(W=w_{i}\right) \lg p\left(W=w_{i}\right)$

$$
\begin{aligned}
& =-(2 / 5) \lg (2 / 5)-(2 / 5) \lg (2 / 5)-(1 / 5) \lg (1 / 5) \\
& =-(4 / 5)+\lg 5 \approx 1.52
\end{aligned}
$$

- If all equally likely to win, $H(W)=\lg 3 \approx 1.58$

Joint Entropy

- X takes values from $\left\{x_{1}, \ldots, x_{n}\right\}$, and $\Sigma_{i} p\left(X=x_{i}\right)=1$
- Y takes values from $\left\{y_{1}, \ldots, y_{m}\right\}$, and $\Sigma_{i} p\left(Y=y_{i}\right)=1$
- Joint entropy of X, Y is:

$$
H(X, Y)=-\Sigma_{j} \Sigma_{i} p\left(X=x_{i}, Y=y_{j}\right) \lg p\left(X=x_{i}, Y=y_{j}\right)
$$

Example

X : roll of fair die, Y : flip of coin
As X, Y are independent:

$$
p(X=1, Y=\text { heads })=p(X=1) p(Y=\text { heads })=1 / 12
$$

and

$$
\begin{aligned}
H(X, Y) & =-\Sigma_{j} \Sigma_{i} p\left(X=x_{i}, Y=y_{j}\right) \lg p\left(X=x_{i}, Y=y_{j}\right) \\
& =-2[6[(1 / 12) \lg (1 / 12)]]=\lg 12
\end{aligned}
$$

Conditional Entropy (Equivocation)

- X takes values from $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Sigma_{i} p\left(X=x_{i}\right)=1$
- Y takes values from $\left\{y_{1}, \ldots, y_{m}\right\}$ and $\Sigma_{i} p\left(Y=y_{i}\right)=1$
- Conditional entropy of X given $Y=y_{j}$ is:

$$
H\left(X \mid Y=y_{j}\right)=-\Sigma_{i} p\left(X=x_{i} \mid Y=y_{j}\right) \lg p\left(X=x_{i} \mid Y=y_{j}\right)
$$

- Conditional entropy of X given Y is:

$$
H(X \mid Y)=-\Sigma_{j} p\left(Y=y_{j}\right) \Sigma_{i} p\left(X=x_{i} \mid Y=y_{j}\right) \lg p\left(X=x_{i} \mid Y=y_{j}\right)
$$

Example

- X roll of red die, Y sum of red, blue roll
- Note $p(X=1 \mid Y=2)=1, p(X=i \mid Y=2)=0$ for $i \neq 1$
- If the sum of the rolls is 2 , both dice were 1
- Thus

$$
H(X \mid Y=2)=-\Sigma_{i} p\left(X=x_{i} \mid Y=2\right) \lg p\left(X=x_{i} \mid Y=2\right)=0
$$

Example (con't)

- Note $p(X=i, Y=7)=1 / 6$
- If the sum of the rolls is 7 , the red die can be any of $1, \ldots, 6$ and the blue die must be 7-roll of red die
- $H(X \mid Y=7)=-\Sigma_{i} p\left(X=x_{i} \mid Y=7\right) \lg p\left(X=x_{i} \mid Y=7\right)$

$$
=-6(1 / 6) \lg (1 / 6)=\lg 6
$$

Example: Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- $M=\left\{m_{1}, \ldots, m_{n}\right\}$ set of messages
- $C=\left\{c_{1}, \ldots, c_{n}\right\}$ set of messages
- Cipher $c_{i}=E\left(m_{i}\right)$ achieves perfect secrecy if $H(M \mid C)=H(M)$

