
ECS 235B Module 49
Information Flow Policies

Module 49 ECS 235B, Foundations of Computer and Information Security 1

Information Flow Policies

Information flow policies are usually:
• reflexive
• So information can flow freely among members of a single class

• transitive
• So if information can flow from class 1 to class 2, and from class 2 to class 3,

then information can flow from class 1 to class 3

Module 49 ECS 235B, Foundations of Computer and Information Security 2

Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty
• With transitivity, information flows from Anne to Betty to Cathy

• Anne confides to Betty she is having an affair with Cathy’s spouse
• Transitivity undesirable in this case, probably

Module 49 ECS 235B, Foundations of Computer and Information Security 3

Non-Lattice Transitive Policies

• 2 faculty members co-PIs on a grant
• Equal authority; neither can overrule the other

• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:
• Reflexive and transitive

• But some elements (people) have no “least upper bound” element
• What is it for the faculty members?

Module 49 ECS 235B, Foundations of Computer and Information Security 4

Confidentiality Policy Model

• Lattice model fails in previous 2 cases
• Generalize: policy I = (SCI, ≤I, joinI):
• SCI set of security classes
• ≤I ordering relation on elements of SCI

• joinI function to combine two elements of SCI

• Example: Bell-LaPadula Model
• SCI set of security compartments
• ≤I ordering relation dom
• joinI function lub

Module 49 ECS 235B, Foundations of Computer and Information Security 5

Confinement Flow Model

• (I, O, confine, ®)
• I = (SCI, ≤I, joinI)
• O set of entities
• ®: O´O with (a, b) Î ® (written a ® b) iff information can flow from a to b
• for a Î O, confine(a) = (aL, aU) Î SCI´SCI with aL ≤I aU

• Interpretation: for a Î O, if x ≤I aU, information can flow from x to a, and if aL ≤I x,
information can flow from a to x

• So aL lowest classification of information allowed to flow out of a, and aU highest
classification of information allowed to flow into a

Module 49 ECS 235B, Foundations of Computer and Information Security 6

Assumptions, etc.

• Assumes: object can change security classes
• So, variable can take on security class of its data

• Object x has security class x currently
• Note transitivity not required
• If information can flow from a to b, then b dominates a under

ordering of policy I:
(" a, b Î O)[a ® b Þ aL ≤I bU]

Module 49 ECS 235B, Foundations of Computer and Information Security 7

Example 1

• SCI = { U, C, S, TS }, with U ≤I C, C ≤I S, and S ≤I TS
• a, b, c Î O
• confine(a) = [C, C]
• confine(b) = [S, S]
• confine(c) = [TS, TS]

• Secure information flows: a ® b, a ® c, b ® c
• As aL ≤I bU, aL ≤I cU, bL ≤I cU

• Transitivity holds

Module 49 ECS 235B, Foundations of Computer and Information Security 8

Example 2

• SCI, ≤I as in Example 1
• x, y, z Î O
• confine(x) = [C, C]
• confine(y) = [S, S]
• confine(z) = [C, TS]

• Secure information flows: x ® y, x ® z, y ® z, z ® x, z ® y
• As xL ≤I yU, xL ≤I zU, yL ≤I zU, zL ≤I xU, zL ≤I yU

• Transitivity does not hold
• y ® z and z ® x, but y ® x is false, because yL ≤I xU is false

Module 49 ECS 235B, Foundations of Computer and Information Security 9

Transitive Non-Lattice Policies

• Q = (SQ, ≤Q) is a quasi-ordered set when ≤Q is transitive and reflexive
over SQ
• How to handle information flow?
• Define a partially ordered set containing quasi-ordered set
• Add least upper bound, greatest lower bound to partially ordered set
• It’s a lattice, so apply lattice rules!

Module 49 ECS 235B, Foundations of Computer and Information Security 10

In Detail …

• "x Î SQ: let f(x) = { y | y Î SQ Ù y ≤Q x }
• Define SQP = { f(x) | x Î SQ }
• Define ≤QP = { (x, y) | x, y Î SQP Ù x Í y }

• SQP partially ordered set under ≤QP
• f preserves order, so y ≤Q x iff f(x) ≤QP f(y)

• Add upper, lower bounds
• SQP¢ = SQP È { SQ, Æ }
• Upper bound ub(x, y) = { z | z Î SQP Ù x Í z Ù y Í z }
• Least upper bound lub(x, y) = Çub(x, y)

• Lower bound, greatest lower bound defined analogously

Module 49 ECS 235B, Foundations of Computer and Information Security 11

And the Policy Is …

• Now (SQP¢, ≤QP) is lattice
• Information flow policy on quasi-ordered set emulates that of this

lattice!

Module 49 ECS 235B, Foundations of Computer and Information Security 12

Nontransitive Flow Policies

• Government agency information flow policy (on next slide)
• Entities public relations officers PRO, analysts A, spymasters S
• confine(PRO) = [public, analysis]
• confine(A) = [analysis, top-level]
• confine(S) = [covert, top-level]

Module 49 ECS 235B, Foundations of Computer and Information Security 13

Information Flow

• By confinement flow model:
• PRO ≤ A, A ≤ PRO
• PRO ≤ S
• A ≤ S, S ≤ A

• Data cannot flow to public
relations officers; not transitive
• S ≤ A, A ≤ PRO
• S ≤ PRO is false

top-level

analysis covert

public

Module 49 ECS 235B, Foundations of Computer and Information
Security

14

Transforming Into Lattice

• Rough idea: apply a special mapping to generate a subset of the
power set of the set of classes
• Done so this set is partially ordered
• Means it can be transformed into a lattice

• Can show this mapping preserves ordering relation
• So it preserves non-orderings and non-transitivity of elements corresponding

to those of original set

Module 49 ECS 235B, Foundations of Computer and Information Security 15

Dual Mapping

• R = (SCR, ≤R, joinR) reflexive info flow policy
• P = (SP, ≤P) ordered set
• Define dual mapping functions lR, hR: SCR®SP

• lR(x) = { x }
• hR(x) = { y | y Î SCR Ù y ≤R x }

• SP contains subsets of SCR; ≤P subset relation
• Dual mapping function order preserving iff

("a, b Î SCR)[a ≤R b Û lR(a) ≤P hR(b)]

Module 49 ECS 235B, Foundations of Computer and Information Security 16

Theorem

Dual mapping from reflexive information flow policy R to ordered set P
order-preserving
Proof sketch: all notation as before
(Þ) Let a ≤R b. Then a Î lR(a), a Î hR(b), so lR(a) Í hR(b), or lR(a) ≤P hR(b)
(Ü) Let lR(a) ≤P hR(b). Then lR(a) Í hR(b). But lR(a) = { a }, so a Î hR(b),
giving a ≤R b

Module 49 ECS 235B, Foundations of Computer and Information Security 17

Information Flow Requirements

• Interpretation: let confine(x) = [xL, xU], consider class y
• Information can flow from x to element of y iff xL ≤R y, or lR(xL) Í hR(y)
• Information can flow from element of y to x iff y ≤R xU, or lR(y) Í hR(xU)

Module 49 ECS 235B, Foundations of Computer and Information Security 18

Revisit Government Example

• Information flow policy is R
• Flow relationships among classes are:

public ≤R public
public ≤R analysis analysis ≤R analysis
public ≤R covert covert ≤R covert
public ≤R top-level covert ≤R top-level
analysis ≤R top-level top-level ≤R top-level

Module 49 ECS 235B, Foundations of Computer and Information Security 19

Dual Mapping of R

• Elements lR, hR:
lR(public) = { public }
hR(public = { public }
lR(analysis) = { analysis }
hR(analysis) = { public, analysis }
lR(covert) = { covert }
hR(covert) = { public, covert }
lR(top-level) = { top-level }
hR(top-level) = { public, analysis, covert, top-level }

Module 49 ECS 235B, Foundations of Computer and Information Security 20

confine

• Let p be entity of type PRO, a of type A, s of type S
• In terms of P (not R), we get:
• confine(p) = [{ public }, { public, analysis }]
• confine(a) = [{ analysis }, { public, analysis, covert, top-level }]
• confine(s) = [{ covert }, { public, analysis, covert, top-level }]

Module 49 ECS 235B, Foundations of Computer and Information Security 21

And the Flow Relations Are …

• p ® a as lR(p) Í hR(a)
• lR(p) = { public }
• hR(a) = { public, analysis, covert, top-level }

• Similarly: a ® p, p ® s, a ® s, s ® a
• But s ® p is false as lR(s) Ë hR(p)
• lR(s) = { covert }
• hR(p) = { public, analysis }

Module 49 ECS 235B, Foundations of Computer and Information Security 22

Analysis

• (SP, ≤P) is a lattice, so it can be analyzed like a lattice policy
• Dual mapping preserves ordering, hence non-ordering and non-

transitivity, of original policy
• So results of analysis of (SP, ≤P) can be mapped back into (SCR, ≤R, joinR)

Module 49 ECS 235B, Foundations of Computer and Information Security 23

