ECS 235B Module 49
Information Flow Policies
Information Flow Policies

Information flow policies are usually:

• reflexive
 • So information can flow freely among members of a single class

• transitive
 • So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3
Non-Transitive Policies

• Betty is a confident of Anne
• Cathy is a confident of Betty
 • With transitivity, information flows from Anne to Betty to Cathy
• Anne confides to Betty she is having an affair with Cathy’s spouse
 • Transitivity undesirable in this case, probably
Non-Lattice Transitive Policies

• 2 faculty members co-PIs on a grant
 • Equal authority; neither can overrule the other
• Grad students report to faculty members
• Undergrads report to grad students
• Information flow relation is:
 • Reflexive and transitive
• But some elements (people) have no “least upper bound” element
 • What is it for the faculty members?
Confidentiality Policy Model

• Lattice model fails in previous 2 cases

• Generalize: policy \(I = (SC_i, \leq_i, \text{join}_i) \):
 • \(SC_i \) set of security classes
 • \(\leq_i \) ordering relation on elements of \(SC_i \)
 • \(\text{join}_i \) function to combine two elements of \(SC_i \)

• Example: Bell-LaPadula Model
 • \(SC_i \) set of security compartments
 • \(\leq_i \) ordering relation \(\text{dom} \)
 • \(\text{join}_i \) function \(\text{lub} \)
Confinement Flow Model

• \((I, O, \text{confine}, \rightarrow)\)
 • \(I = (SC_I, \leq_I, \text{join}_I)\)
 • \(O\) set of entities
 • \(\rightarrow\): \(O \times O\) with \((a, b) \in \rightarrow\) (written \(a \rightarrow b\)) iff information can flow from \(a\) to \(b\)
 • for \(a \in O\), \(\text{confine}(a) = (a_L, a_U) \in SC_I \times SC_I\) with \(a_L \leq_I a_U\)
 • Interpretation: for \(a \in O\), if \(x \leq_I a_U\), information can flow from \(x\) to \(a\), and if \(a_L \leq_I x\), information can flow from \(a\) to \(x\)
 • So \(a_L\) lowest classification of information allowed to flow out of \(a\), and \(a_U\) highest classification of information allowed to flow into \(a\)
Assumptions, etc.

• Assumes: object can change security classes
 • So, variable can take on security class of its data
• Object x has security class x currently
• Note transitivity *not* required
• If information can flow from a to b, then b dominates a under ordering of policy I:
 $$(\forall a, b \in O)[a \rightarrow b \Rightarrow a_L \leq_I b_U]$$
Example 1

- $SC_I = \{ U, C, S, TS \}$, with $U \leq_I C$, $C \leq_I S$, and $S \leq_I TS$
- $a, b, c \in O$
 - $\text{confine}(a) = [C, C]$
 - $\text{confine}(b) = [S, S]$
 - $\text{confine}(c) = [TS, TS]$
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$
 - As $a_L \leq_I b_U$, $a_L \leq_I c_U$, $b_L \leq_I c_U$
 - Transitivity holds
Example 2

• SC_I, \leq_I as in Example 1

• $x, y, z \in O$
 • $\text{confine}(x) = [C, C]$
 • $\text{confine}(y) = [S, S]$
 • $\text{confine}(z) = [C, TS]$

• Secure information flows: $x \rightarrow y, x \rightarrow z, y \rightarrow z, z \rightarrow x, z \rightarrow y$
 • As $x_L \leq_I y_U, x_L \leq_I z_U, y_L \leq_I z_U, z_L \leq_I x_U, z_L \leq_I y_U$
 • Transitivity does not hold
 • $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_L \leq_I x_U$ is false
Transitive Non-Lattice Policies

• $Q = (S_Q, \leq_Q)$ is a quasi-ordered set when \leq_Q is transitive and reflexive over S_Q

• How to handle information flow?
 • Define a partially ordered set containing quasi-ordered set
 • Add least upper bound, greatest lower bound to partially ordered set
 • It’s a lattice, so apply lattice rules!
In Detail ...

• \(\forall x \in S_Q: \text{ let } f(x) = \{ y \mid y \in S_Q \land y \leq_Q x \} \)
 • Define \(S_{QP} = \{ f(x) \mid x \in S_Q \} \)
 • Define \(\leq_{QP} = \{ (x, y) \mid x, y \in S_{QP} \land x \subseteq y \} \)
 • \(S_{QP} \) partially ordered set under \(\leq_{QP} \)
 • \(f \) preserves order, so \(y \leq_Q x \) iff \(f(x) \leq_{QP} f(y) \)

• Add upper, lower bounds
 • \(S_{QP}' = S_{QP} \cup \{ S_Q, \emptyset \} \)
 • Upper bound \(ub(x, y) = \{ z \mid z \in S_{QP} \land x \subseteq z \land y \subseteq z \} \)
 • Least upper bound \(lub(x, y) = \cap ub(x, y) \)
 • Lower bound, greatest lower bound defined analogously
And the Policy Is ...

- Now \((S_{QP'}, \leq_{QP})\) is lattice
- Information flow policy on quasi-ordered set emulates that of this lattice!
Nontransitive Flow Policies

• Government agency information flow policy (on next slide)
• Entities public relations officers PRO, analysts A, spymasters S
 • \textit{confine}(\text{PRO}) = [public, analysis]
 • \textit{confine}(\text{A}) = [analysis, top-level]
 • \textit{confine}(\text{S}) = [covert, top-level]
Information Flow

• By confinement flow model:
 • PRO ≤ A, A ≤ PRO
 • PRO ≤ S
 • A ≤ S, S ≤ A

• Data cannot flow to public relations officers; not transitive
 • S ≤ A, A ≤ PRO
 • S ≤ PRO is false
Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
 - Done so this set is partially ordered
 - Means it can be transformed into a lattice

- Can show this mapping preserves ordering relation
 - So it preserves non-orderings and non-transitivity of elements corresponding to those of original set
Dual Mapping

• \(R = (SC_R, \leq_R, join_R) \) reflexive info flow policy
• \(P = (S_P, \leq_P) \) ordered set
 • Define dual mapping functions \(l_R, h_R: SC_R \rightarrow S_P \)
 • \(l_R(x) = \{ x \} \)
 • \(h_R(x) = \{ y \mid y \in SC_R \land y \leq_R x \} \)
• \(S_P \) contains subsets of \(SC_R; \leq_P \) subset relation
• Dual mapping function order preserving iff
 \[
 (\forall a, b \in SC_R)[\ a \leq_R b \Leftrightarrow l_R(a) \leq_P h_R(b)]
 \]
Theorem

Dual mapping from reflexive information flow policy R to ordered set P order-preserving

Proof sketch: all notation as before

(\Rightarrow) Let $a \leq_R b$. Then $a \in l_R(a)$, $a \in h_R(b)$, so $l_R(a) \subseteq h_R(b)$, or $l_R(a) \leq_P h_R(b)$

(\Leftarrow) Let $l_R(a) \leq_P h_R(b)$. Then $l_R(a) \subseteq h_R(b)$. But $l_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq_R b$
Information Flow Requirements

• Interpretation: let $confine(x) = [x_L, x_U]$, consider class y
 • Information can flow from x to element of y iff $x_L \leq_R y$, or $l_R(x_L) \subseteq h_R(y)$
 • Information can flow from element of y to x iff $y \leq_R x_U$, or $l_R(y) \subseteq h_R(x_U)$
Revisit Government Example

• Information flow policy is R

• Flow relationships among classes are:

 public \leq_R public
 public \leq_R analysis analysis \leq_R analysis
 public \leq_R covert covert \leq_R covert
 public \leq_R top-level covert \leq_R top-level
 analysis \leq_R top-level top-level \leq_R top-level
Dual Mapping of R

- Elements l_R, h_R:

 l_R(public) = \{ public \}

 h_R(public) = \{ public \}

 l_R(analysis) = \{ analysis \}

 h_R(analysis) = \{ public, analysis \}

 l_R(covert) = \{ covert \}

 h_R(covert) = \{ public, covert \}

 l_R(top-level) = \{ top-level \}

 h_R(top-level) = \{ public, analysis, covert, top-level \}
confine

• Let p be entity of type PRO, a of type A, s of type S
• In terms of P (not R), we get:
 • $confine(p) = [\{ \text{public} \}, \{ \text{public, analysis} \}]$
 • $confine(a) = [\{ \text{analysis} \}, \{ \text{public, analysis, covert, top-level} \}]$
 • $confine(s) = [\{ \text{covert} \}, \{ \text{public, analysis, covert, top-level} \}]$
And the Flow Relations Are ...

- $p \rightarrow a$ as $l_R(p) \subseteq h_R(a)$
 - $l_R(p) = \{ \text{public} \}$
 - $h_R(a) = \{ \text{public, analysis, covert, top-level} \}$
- Similarly: $a \rightarrow p$, $p \rightarrow s$, $a \rightarrow s$, $s \rightarrow a$
- But $s \rightarrow p$ is false as $l_R(s) \not\subset h_R(p)$
 - $l_R(s) = \{ \text{covert} \}$
 - $h_R(p) = \{ \text{public, analysis} \}$
Analysis

• \((S_p, \leq_p)\) is a lattice, so it can be analyzed like a lattice policy
• Dual mapping preserves ordering, hence non-ordering and non-transitivity, of original policy
 • So results of analysis of \((S_p, \leq_p)\) can be mapped back into \((SC_R, \leq_R, \text{join}_R)\)