ECS 235B Module 49 Information Flow Policies

Information Flow Policies

Information flow policies are usually:

- reflexive
	- So information can flow freely among members of a single class
- transitive
	- So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3

Non-Transitive Policies

- Betty is a confident of Anne
- Cathy is a confident of Betty
	- With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy's spouse
	- Transitivity undesirable in this case, probably

Non-Lattice Transitive Policies

- 2 faculty members co-PIs on a grant
	- Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
	- Reflexive and transitive
- But some elements (people) have no "least upper bound" element
	- What is it for the faculty members?

Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy *I* = (SC_I, ≤_I, join_I):
	- *SC*, set of security classes
	- ≤*^I* ordering relation on elements of *SCI*
	- *join*, function to combine two elements of *SC*
- Example: Bell-LaPadula Model
	- *SC*_{*I*} set of security compartments
	- ≤*^I* ordering relation *dom*
	- *join*, function *lub*

Confinement Flow Model

- $(I, O, confine, \rightarrow)$
	- $I = (SC_1, S_1, join_1)$
	- *O* set of entities
	- \rightarrow : *O* \times *O* with $(a, b) \in \rightarrow$ (written $a \rightarrow b$) iff information can flow from *a* to *b*
	- for $a \in O$, $confine(a) = (a_L, a_U) \in SC_I \times SC_I$ with $a_L \leq_l a_U$
		- Interpretation: for $a \in O$, if $x \leq a_U$, information can flow from x to a , and if $a_L \leq x$, information can flow from *a* to *x*
		- So a_l lowest classification of information allowed to flow out of a_l , and a_l , highest classification of information allowed to flow into *a*

Assumptions, *etc*.

- Assumes: object can change security classes
	- So, variable can take on security class of its data
- Object *x* has security class *x* currently
- Note transitivity *not* required
- If information can flow from *a* to *b*, then *b* dominates *a* under ordering of policy *I*:

 $(\forall a, b \in O)[a \rightarrow b \Rightarrow a \leq b \leq b$

Example 1

- $SC_i = \{ U, C, S, TS \}$, with $U \leq_i C$, $C \leq_i S$, and $S \leq_i TS$
- $a, b, c \in O$
	- confine $(a) = [C, C]$
	- confine $(b) = [S, S]$
	- confine (c) = $[$ TS, TS $]$
- Secure information flows: $a \rightarrow b$, $a \rightarrow c$, $b \rightarrow c$
	- As $a_1 \leq b_1, a_1 \leq c_1, b_1 \leq c_1$
	- Transitivity holds

Example 2

- *SC_I*, ≤_{*I*} as in Example 1
- $x, y, z \in O$
	- confine $(x) = [C, C]$
	- confine $(y) = [S, S]$
	- confine (z) = $[$ C, TS $]$
- Secure information flows: $x \rightarrow y$, $x \rightarrow z$, $y \rightarrow z$, $z \rightarrow x$, $z \rightarrow y$
	- As $x_1 \leq y_1, x_1 \leq z_1, y_1 \leq z_1, z_1, z_1 \leq x_1, z_1 \leq y_1$
	- Transitivity does not hold
		- $y \rightarrow z$ and $z \rightarrow x$, but $y \rightarrow x$ is false, because $y_1 \leq y_1 x_0$ is false

Transitive Non-Lattice Policies

- $Q = (S_0, S_0)$ is a *quasi-ordered set* when S_0 is transitive and reflexive over S_Q
- How to handle information flow?
	- Define a partially ordered set containing quasi-ordered set
	- Add least upper bound, greatest lower bound to partially ordered set
	- It's a lattice, so apply lattice rules!

In Detail …

- $\forall x \in S_{\Omega}$: let $f(x) = \{ y \mid y \in S_{\Omega} \land y \leq_{\Omega} x \}$
	- Define $S_{OP} = \{ f(x) | x \in S_Q \}$
	- Define $\leq_{\Omega P} = \{ (x, y) \mid x, y \in S_{QP} \wedge x \subseteq y \}$
		- *S_{OP}* partially ordered set under ≤_{OP}
		- *f* preserves order, so $y \leq Q X$ iff $f(x) \leq Q P f(y)$
- Add upper, lower bounds
	- $S_{QP}^{\prime} = S_{QP} \cup \{ S_{Q}, \emptyset \}$
	- Upper bound $ub(x, y) = \{ z \mid z \in S_{OP} \land x \subseteq z \land y \subseteq z \}$
	- Least upper bound $lub(x, y) = \bigcap ub(x, y)$
		- Lower bound, greatest lower bound defined analogously

And the Policy Is …

- Now (S_{QP}', ≤_{QP}) is lattice
- Information flow policy on quasi-ordered set emulates that of this lattice!

Nontransitive Flow Policies

- Government agency information flow policy (on next slide)
- Entities public relations officers PRO, analysts A, spymasters S
	- *confine*(PRO) = [public, analysis]
	- *confine*(A) = [analysis, top-level]
	- *confine*(S) = [covert, top-level]

Information Flow

- By confinement flow model:
	- PRO \leq A, A \leq PRO
	- \cdot PRO \leq S
	- $A \leq S, S \leq A$
- Data *cannot* flow to public relations officers; not transitive
	- \bullet S \leq A, A \leq PRO
	- S ≤ PRO is *false*

Transforming Into Lattice

- Rough idea: apply a special mapping to generate a subset of the power set of the set of classes
	- Done so this set is partially ordered
	- Means it can be transformed into a lattice
- Can show this mapping preserves ordering relation
	- So it preserves non-orderings and non-transitivity of elements corresponding to those of original set

Dual Mapping

- $R = (SC_R, S_R, join_R)$ reflexive info flow policy
- $P = (S_p, S_p)$ ordered set
	- Define *dual mapping* functions l_R , h_R : $SC_R \rightarrow S_p$
		- $l_R(x) = \{ x \}$
		- $h_{p}(x) = \{ v \mid v \in SC_{p} \wedge v \leq_{p} x \}$
	- S_p contains subsets of SC_R ; \leq_p subset relation
	- Dual mapping function *order preserving* iff

 $(\forall a, b \in SC_R)$ [$a \leq_R b \Leftrightarrow l_R(a) \leq_R h_R(b)$]

Theorem

Dual mapping from reflexive information flow policy *R* to ordered set *P* order-preserving

Proof sketch: all notation as before

 (\Rightarrow) Let $a \leq_R b$. Then $a \in I_R(a)$, $a \in h_R(b)$, so $I_R(a) \subseteq h_R(b)$, or $I_R(a) \leq_R h_R(b)$ (\Leftarrow) Let $I_R(a) \leq P_h(a)$. Then $I_R(a) \subseteq h_R(b)$. But $I_R(a) = \{a\}$, so $a \in h_R(b)$, giving $a \leq R b$

Information Flow Requirements

- Interpretation: let *confine*(x) = [x_1 , x_1], consider class y
	- Information can flow from *x* to element of *y* iff $x_l \leq_R y$, or $l_R(x_l) \subseteq h_R(y)$
	- Information can flow from element of *y* to *x* iff $y \leq_R x_U$, or $I_R(y) \subseteq h_R(x_U)$

Revisit Government Example

• Information flow policy is *R*

• Flow relationships among classes are:

public \leq_R public public ≤*^R* analysis analysis ≤*R* analysis public ≤_{*R*} covert covert ≤_{*R*} covert public \leq_R top-level covert \leq_R top-level analysis \leq_R top-level top-level \leq_R top-level

Dual Mapping of *R*

```
• Elements I_R, h_R:
l_R(public) = { public }
h_R(public = { public }
I_R(analysis) = { analysis }
h_R(analysis) = { public, analysis }
I_R(covert) = { covert }
h_R(covert) = { public, covert }
I_R(top-level) = { top-level }
h_R(top-level) = { public, analysis, covert, top-level }
```
confine

- Let *p* be entity of type PRO, *a* of type A, *s* of type S
- In terms of *P* (not *R*), we get:
	- $confine(p) = [\{ public \}, \{ public, analysis \}]$
	- *confine*(*a*) = [{ analysis }, { public, analysis, covert, top-level }]
	- *confine*(*s*) = [{ covert }, { public, analysis, covert, top-level }]

And the Flow Relations Are …

- $p \rightarrow a$ as $l_R(p) \subseteq h_R(a)$
	- $l_R(p) = \{ \text{ public } \}$
	- $h_R(a) = \{$ public, analysis, covert, top-level $\}$
- Similarly: $a \rightarrow p$, $p \rightarrow s$, $a \rightarrow s$, $s \rightarrow a$
- But $s \rightarrow p$ is false as $l_R(s) \not\subset h_R(p)$
	- $I_R(s) = \{$ covert $\}$
	- $h_R(p) = \{$ public, analysis $\}$

Analysis

- (S_p, S_p) is a lattice, so it can be analyzed like a lattice policy
- Dual mapping preserves ordering, hence non-ordering and nontransitivity, of original policy
	- So results of analysis of (S_p, S_p) can be mapped back into $(SC_R, S_R, join_R)$