ECS 235B Module 52 Covert Channels

Covert Channels

- Shared resources as communication paths
- Covert storage channel uses attribute of shared resource
 - Disk space, message size, etc.
- Covert timing channel uses temporal or ordering relationship among accesses to shared resource
 - Regulating CPU usage, order of reads on disk

Example Storage Channel

- Processes p, q not allowed to communicate
 - But they share a file system!
- Communications protocol:
 - *p* sends a bit by creating a file called 0 or 1, then a second file called *send*
 - *p* waits until *send* is deleted before repeating to send another bit
 - q waits until file send exists, then looks for file 0 or 1; whichever exists is the bit
 - *q* then deletes *0*, *1*, and *send* and waits until *send* is recreated before repeating to read another bit

Example Timing Channel

- System has two VMs
 - Sending machine S, receiving machine R
- To send:
 - For 0, S immediately relinquishes CPU
 - For example, run a process that instantly blocks
 - For 1, S uses full quantum
 - For example, run a CPU-intensive process
- *R* measures how quickly it gets CPU
 - Uses real-time clock to measure intervals between access to shared resource (CPU)

Example Covert Channel

- Uses ordering of events; does not use clock
- Two VMs sharing disk cylinders 100 to 200
 - SCAN algorithm schedules disk accesses
 - One VM is *High* (*H*), other is *Low* (*L*)
- Idea: L will issue requests for blocks on cylinders 139 and 161 to be read
 - If read as 139, then 161, it's a 1 bit
 - If read as 161, then 139, it's a 0 bit

How It Works

- *L* issues read for data on cylinder 150
 - Relinquishes CPU when done; arm now at 150
- *H* runs, issues read for data on cylinder 140
 - Relinquishes CPU when done; arm now at 140
- *L* runs, issues read for data on cylinders 139 and 161
 - Due to SCAN, reads 139 first, then 161
 - This corresponds to a 1
- To send a 0, *H* would have issued read for data on cylinder 162

Analysis

- Timing or storage?
 - Usual definition \Rightarrow storage (no timer, clock)
- Modify example to include timer
 - L uses this to determine how long requests take to complete
 - Time to seek to $139 < time to seek to <math>161 \Rightarrow 1$; otherwise, 0
- Channel works same way
 - Suggests it's a timing channel; hence our definition

Noisy vs. Noiseless

- Noiseless: covert channel uses resource available only to sender, receiver
- Noisy: covert channel uses resource available to others as well as to sender, receiver
 - Idea is that others can contribute extraneous information that receiver must filter out to "read" sender's communication

Key Properties

- *Existence*: the covert channel can be used to send/receive information
- *Bandwidth*: the rate at which information can be sent along the channel
- Goal of analysis: establish these properties for each channel
 - If you can eliminate the channel, great!
 - If not, reduce bandwidth as much as possible