

Outline for January 9, 2001 ECS 251 – Winter 2001 Page 1

Last modified at 11:32 pm on Sunday, January 7, 2001

Outline for January 9, 2001

1. Greetings and felicitations!
a. First part of project due Friday
b. Web page up and running!

2. What is concurrency?
a. Concurrent (parallel) vs. sequential (serial)
b. Logical vs.actual concurrency
c. Process creation: statically declare all subprocesses (created at execution) or dynamically spawn them
d. Can view OS as a collection of concurrent processes

3. Simple parallel constructs
a. fork, join, quit
b. cobegin/coend

4. Process models
a. P(p1, p2); S(p1,p2)
b. Proper and improper nesting
c.

→

 (precedence) relation:

p

i

→

p

j

 means

p

i

 must complete before

p

j

 starts
d. Domain, range of processes
e. Equivalence of systems of processes
f. Determinate system of processes
g. Mutually noninterfering system of processes
h. Theorem: If a system is mutually noninterfering, it is determinate.
i. Theorem: Let

f

p

 be an interpretation of process

p

. Let

∏

 be a system of processes, with

p

∈

∏

. If for all such

p

,

domain

(

p

)

≠

 Ø and

range

(

p

)

≠

 Ø, but

f

p

 unspecified, is determinate for all

f

p

, then all processes in

∏

 are
mutually noninterfering

j. Maximally parallel system: determinate system for which the removal of any pair from the relation

→

 makes
the two processes in the pair interfering processes.

5. Critical section problem
a. Mutual exclusion
b. Progress
c. Bounded wait

6. Classical problems
a. Producer/consumer
b. Readers/writers (first: readers priority; second: writers priority)
c. Dining philosophers

7. Basic language constructs
a. Semaphores
b. Send/receive

8. Evaluating higher-level language constructs
a. Modularity
b. Constraints
c. Expressive power
d. Ease of use
e. Portability
f. Relationship with proram structure
g. Process failures, unanticipated faults (exception handling)
h. Real-time systems

9. Higher-level language constructs
a. Monitors
b. Crowd monitors

Outline for January 9, 2001 ECS 251 – Winter 2001 Page 2

Last modified at 11:32 pm on Sunday, January 7, 2001

c. Invariant expressions
d. CSP
e. RPC
f. ADA™

Improper Nesting Example ECS 251 – Winter 2001 Page 3

Last modified at 11:32 pm on Sunday, January 7, 2001

Improper Nesting Example

Introduction

One of the limits on the use of parbegin/parend, and any related constructs, is that the program involved must be prop-
erly nested. Not all programs are. For example, consider the program represented by the following graphs.

The Program as Graphs

Using

fork/join

 Primitives

The program equivalent to these precedence and process flow graphs is:

t6 := 2;
t8 := 3;
S1; fork p2; fork p5; fork p7; quit;

p2: S2; fork p3: fork p4; quit;
p5: S5; join t6, p6; quit;
p7: S7; join t8, p8; quit;
p3: S3; join t8, p8; quit;
p4: S4; join t6, p6; quit;
p6: S6; join t8, p8; quit;
p8: S8; quit

where S

i

 is the program for p

i

.

Using

parbegin/parend

 Primitives

To see if this is possible, we must determine if the above program is properly nested. If not, we clearly cannot repre-
sent it using

parbegin

 and

parend

, which require a block structure, and hence proper nesting.
Let

S

(

a

,

b

) represent the serial execution of processes

a

 and

b

, and

P

(

a

,

b

) the parallel execution of processes

a

 and

b

.
Then a process flow graph is properly nested if it can be described by

P

,

S

, and functional composition. For example,
the program

precedence graph

 S1

S2 S5 S7

S3 S4

S6

S8

S

E

p1

p2

p7
p5

p4

p3
p6

p8

process flow graphprecedence graph

 S1

S2 S5 S7

S3 S4

S6

S8

S

E

p1

p2

p7

p5

p4

p3
p6

p8

process flow graph

Improper Nesting Example ECS 251 – Winter 2001 Page 4

Last modified at 11:32 pm on Sunday, January 7, 2001

parbegin

p1: a := b + 1;
p2: c := d + 1;

parend

p3: e := a + c;

would be written as

S

(

P

(p1,p2),p3)
We now prove:

Claim

. The example is not properly nested.

Proof

: For something to be properly nested, it must be of the form

S

(p

i

,p

j

) or

P

(p

i

,p

j

) at the most interior level.
Clearly the example's most interior level is not

P

(p

i

,p

j

) as there are no constructs of that form in the graph.
In the graph, all serially connected processes pi and pj have at least 1 more process p

k

 starting or finishing at the node
between p

i

 and p

j

; but if

S

(p

i

,p

j

) is in the innermost level, there can be no such p

k

 (else a more interior

P

 or

S

 is
needed, contradiction). Hence, it's not

S

(p

i

,p

j

) either.

Maximally Parallel Systems ECS 251 – Winter 2001 Page 5

Last modified at 11:32 pm on Sunday, January 7, 2001

Maximally Parallel Systems

Introduction

A

maximally parallel system

is a determinate system for which the removal of any pair from the precedence relation

→

 makes the two processes in the pair interfering processes.

Example

The system

S

 = (

∏

,

→

) is composed of the set of processes

∏

 = {

p

1

, .,

p

9

 } and the precedence relation

→

 = { (

p

1

,

p

2

), (

p

1

,

p

3

), (

p

1

,

p

4

), (

p

2

,

p

5

), (

p

3

,

p

5

), (

p

4

,

p

6

), (

p

4,p7), (p4,p8), (p5,p8), (p6,p8), (p7,p9), (p8,p9) }.
The processes have the following domains and ranges:

process p1 p2 p3 p4 p5 p6 p7 p8 p9
domain 1 4 3 1 3 6 5 1,3 1,4,6
range 2,3 4 2,3 1 3 6 5 4 2,3

Transitive closure of →
In the following, a bullet is placed whenever the process in the row precedes the process in the column under →.

p1 p2 p3 p4 p5 p6 p7 p8 p9
p1 • • •
p2 •
p3 •
p4 • • •
p5 •
p6 •
p7 •
p8 •

For p1, we have p1 → p2 and p2 → p5, so p1 → p5. As p5 → p8, p1 → p8. As p8 → p9, p1 → p9. The table becomes:

p1 p2 p3 p4 p5 p6 p7 p8 p9
p1 • • • • • • • •
p2 •
p3 •
p4 • • •
p5 •
p6 •
p7 •
p8 •

Continuing on in this fashion, the table finally becomes:
p1 p2 p3 p4 p5 p6 p7 p8 p9

p1 • • • • • • • •
p2 • • •
p3 • • •
p4 • • • •
p5 • •
p6 • •
p7 •
p8 •

giving the transitive closure of → to be:

→* = { (p1,p2), (p1,p3), (p1,p4), (p1,p5), (p1,p6), (p1,p7), (p1,p8), (p1,p9), (p2,p5), (p2,p8), (p2,p9), (p3,p5), (p3,p8),
 (p3,p9), (p4,p6), (p4,p7), (p4,p8), (p4,p9), (p5,p8), (p5,p9), (p6,p8), (p6,p9), (p7,p9), (p8,p9) }

Maximally Parallel Systems ECS 251 – Winter 2001 Page 6

Last modified at 11:32 pm on Sunday, January 7, 2001

Bernstein Conditions

For the system to be determinate, the Bernstein conditions must hold. This means that two processes which write into
the same memory location cannot be executed concurrently. Also, if a process reads from a location that another pro-
cess writes to, those two processes cannot be concurrent. So we first list those processes which cannot be concurrent

by computing the elements of the three sets listed below. (We use →* for this, because the original precedence rela-
tion may omit pairs that follow from the transitivity of →.) Note that the range of pi is the set of memory locations
that pi writes to, and the domain of pi is the set of memory locations that pi reads from.

range(pi) ∩ range(pj) = { (p1,p3), (p1,p5), (p1,p9), (p2,p8), (p3,p5), (p3,p9), (p5,p9) }
domain(pi) ∩ range(pj) = { (p1,p4), (p2,p8), (p3,p5), (p3,p9), (p5,p9), (p8,p9) }
range(pi) ∩ domain(pj) = { (p1,p3), (p1,p5), (p1,p8), (p2,p9), (p3,p5), (p3,p8), (p4,p8), (p4,p9), (p5,p8), (p6,p9) }

The Equivalent Maximally Parallel System

The only precedences that are actually required by the system are those that enforce the Bernstein conditions. The

complete set of precedences that exist in the system is given by the set →*, so taking those elements of →* in the

three sets above gives us the precedence relation → + for the maximally parallel system equivalent to the original sys-
tem:

→+ = { (p1,p3), (p1,p4), (p1,p5), (p1,p8), (p1,p9), (p2,p8), (p2,p9), (p3,p5), (p3,p8), (p3,p9), (p4,p8), (p4,p9), (p5,p8),
 (p5,p9), (p6,p9), (p8,p9) }
Now, note that several of these elements are implied by others, since precedence is transitive; for example, (p1,p4) and
(p4,p8) means (p1,p8) holds. Eliminating these redundent precedences, this set becomes:

{ (p1,p3), (p1,p4), (p2,p8), (p3,p5), (p4,p8), (p5,p8), (p6,p9), (p8,p9) }

Producer/Consumer Problem ECS 251 – Winter 2001 Page 7

Last modified at 11:32 pm on Sunday, January 7, 2001

Producer/Consumer Problem

Introduction

This algorithm uses semaphores to solve the producer/consumer (or bounded buffer) problem.

Algorithm

1 var buffer: array [0..n-1] of item;
2 full, empty, mutex: semaphore;
3 nextp, nextc: item;
4 begin
5 full := 0;
6 empty := n;
7 mutex := 1;
8 parbegin
9 repeat (* producer process *)
10 (* produce an item in nextp *)
11 P(empty);
12 P(mutex);
13 (* deposit nextp in buffer *)
14 V(mutex);
15 V(full);
16 until false;
17 repeat (* consumer process *)
18 P(full);
19 P(mutex);
20 (* extract an item in nextc *)
21 V(mutex);
22 V(empty);
23 (* consume the item in nextc *)
24 until false;
25 parend;
26 end.

Comments

lines 1-3 Here, buffer is the shared buffer, and contains n spaces; full is a semaphore the value of which
is the number of filled slots in the buffer, empty is a semaphore the value of which is the number
of emoty slots in the buffer, and mutex is a semaphore used to enforce mutual exclusion (so only
one process can access the buffer at a time). nextp and nextc are the items produced by the pro-
ducer and consumed by the consumer, respectively.

line 5-7 This just initializes all the semaphores. It is the only time anything other than a down or an up
operation may be done to them.

line 10 Since the buffer is not accessed while the item is produced, we don't need to put semaphores around
this part.

lines 11-13 Depositing an item into the buffer, however, does require that the producer process obtain exclusive
access to the buffer. First, the producer checks that there is an empty slot in the buffer for the new
item and, if not, waits until there is (P(empty)). When there is, it waits until it can obtain exclu-
sive access to the buffer (P(mutex)). Once both these conditions are met, it can safely deposit the
item.

lines 14-15 As the producer is done with the buffer, it signals that any other process needing to access the buffer
may do so (V(mutex)). It then indicates it has put another item into the buffer (V(full)).

Producer/Consumer Problem ECS 251 – Winter 2001 Page 8

Last modified at 11:32 pm on Sunday, January 7, 2001

lines 18-20 Extracting an item from the buffer, however, does require that the consumer process obtain exclu-
sive access to the buffer. First, the consumer checks that there is a slot in the buffer with an item
deposited and, if not, waits until there is (P(full)). When there is, it waits until it can obtain
exclusive access to the buffer (P(mutex)). Once both these conditions are met, it can safely
extract the item.

lines 21-22 As the consumer is done with the buffer, it signals that any other process needing to access the
buffer may do so (V(mutex)). It then indicates it has extracted another item into the buffer
(V(empty)).

line 23 Since the buffer is not accessed while the item is consumed, we don't need to put semaphores
around this part.

First Readers Writers Problem ECS 251 – Winter 2001 Page 9

Last modified at 11:32 pm on Sunday, January 7, 2001

First Readers Writers Problem

Introduction

This algorithm uses semaphores to solve the first readers-writers problem.

Algorithm

1 var wrt, mutex: semaphore;
2 readcount: integer;
3 begin
4 readcount := 0;
5 wrt := 1;
6 mutex := 1;
7 parbegin
8 repeat (* reader process *)
9 (* do something *)
10 P(mutex);
11 readcount := readcount + 1;
12 if readcount = 1 then
13 P(wrt);
14 V(mutex);
15 (* read the file *)
16 P(mutex);
17 readcount := readcount - 1;
18 if readcount = 0 then
19 V(wrt);
20 V(mutex);
21 (* do something else *)
22 until false;
23 repeat (* writer process *)
24 (* do something *)
25 P(wrt);
26 (* write to the file *)
27 V(wrt);
28 (* do something else *)
29 until false;
30 parend;
31 end.

Comments

lines 1-2 Here, readcount contains the number of processes reading the file, and mutex is a semaphore
used to provide mutual exclusion when readcount is incremented or decremented. The sema-
phore wrt is common to both readers and writers and ensures that when one writer is accessing the
file, no other readers or writers may do so.

lines 4-6 This just initializes all the semaphores. It is the only time anything other than a down or an up
operation may be done to them. As no readers are yet reading the file, readcount is initialized to
0.

line 9 Since the file is not accessed here, we don't need to put semaphores around this part.

lines 10-15 Since the value of the shared variable readcount is going to be changed, the process must wait
until no-one else is accessing it (P(mutex)). Since this process will read from the file, read-
count is incremented by 1; if this is the only reader that will access the file, it waits until any writ-

First Readers Writers Problem ECS 251 – Winter 2001 Page 10

Last modified at 11:32 pm on Sunday, January 7, 2001

ers have finished (P(wrt)). It then indicates other processes may access readcount
(P(mutex)) and proceeds to read from the file.

lines 16-20 Now the reader is done reading the file (for now.) It must update the value of readcount to indi-
cate this, so it waits until no-one else is accessing that variable (P(mutex)) and then decrements
readcount. If no other readers are waiting to read (readcount = 0), it signals that any
reader or writer who wishes to access the file may do so (V(wrt)). Finally, it indicates it is done
with readcount (V(mutex)).

line 24 Since the file is not accessed here, we don't need to put semaphores around this part.

lines 25-26 The writer process waits (P(wrt)) until no other process is accessing the file; it then proceeds to
write to the file.

line 27 When the writer is done writing to the file, it signals that anyone who wishes to access the file may
do so (V(wrt)).

send/receive Chart ECS 251 – Winter 2001 Page 11

Last modified at 11:32 pm on Sunday, January 7, 2001

send/receive Chart

Introduction

These charts summarize the actions of the send and receive primitives using both blocking and non-blocking mode
and explicit and implicit naming.

Charts

This chart summarizes how naming and blocking affects the send primitive.

This chart summarizes how naming and blocking affects the receive primitive.

send blocking non-blocking

explicit
naming

send message to receiver; wait until message
accepted

send message to receiver

implicit
naming

broadcast message; wait until all processes
accept message

broadcast message

receive blocking non-blocking

explicit
naming

wait for message from named sender if there is a message from the named sender,
get it; otherwise, proceed

implicit
naming

wait for message from any sender if there is a message from any sender, get it;
otherwise, proceed

Producer Consumer Problem ECS 251 – Winter 2001 Page 12

Last modified at 11:32 pm on Sunday, January 7, 2001

Producer Consumer Problem

Introduction

This algorithm uses blocking send and receive primitives to solve the producer/consumer (or bounded-buffer) prob-
lem. In this solution, the buffer size depends on the capacity of the link.

Algorithm

1 var nextp, nextc: item;
2 procedure producer;
3 begin
4 while true do begin
5 (* produce item in nextp *)
6 send(“Consumerprocess”, nextp);
7 end;
8 end;
9 procedure consumer;
10 begin
11 while true do begin
12 receive(“Producerprocess”, nextc);
13 (* consume item in nextc *)
14 end;
15 end;
16 begin
17 parbegin
18 Consumerprocess: consumer;
19 Producerprocess: producer;
20 parend
21 end.

Comments

line 1 Here, nextp is the item the consumer produces, and nextc the item that the consumer con-
sumes.

lines 2-8 This procedure simply generates items and sends them to the consumer process (named Consum-
erprocess). Suppose the capacity of the link is n items. If n items are waiting to be consumed,
and the producer tries to send the n+1-st item, the producer will block (suspend) until the consumer
has removed one item from the link (i.e., done a receive on the producer process). Note the name
of the consumer process is given explicitly, so this is an example of “explicit naming” or “direct
communication.” Also, since the send is blocking, it ias an example of “synchronous communica-
tion.”

lines 9-15 This code simply receives items from the producer process (named Producerprocess) and
consumes them. If when the receive statement is executed there are no items in the link, the con-
sumer will block (suspend) until the producer has put an item from the link (i.e., done a send to the
consumer process). Note the name of the producer process is given explicitly; again this is an
example of “explicit naming” or “direct communication.” Also, since the receive is blocking, it is
an example of “synchronous communication.”

lines 17-20 This starts two concurrent processes, the Consumerprocess and the Producerprocess.

Producer Consumer Problem ECS 251 – Winter 2001 Page 13

Last modified at 11:32 pm on Sunday, January 7, 2001

Producer Consumer Problem

Introduction

This algorithm uses a monitor to solve the producer/consumer (or bounded-buffer) problem.

Algorithm

1 buffer: monitor;
2 var slots: array [0..n-1] of item;
3 count, in, out: integer;
4 notempty, notfull: condition;
5 procedure entry deposit(data: item);
6 begin
7 if count = n then
8 notfull.wait;
9 slots[in] := data;
10 in := in + 1 mod n;
11 count := count + 1;
12 notempty.signal;
13 end;
14 procedure entry extract(var data: item);
15 begin
16 if count = 0 then
17 notempty.wait;
18 data := slots[out];
19 out := out + 1 mod n;
20 count := count – 1;
21 notfull.signal;
22 end;
23 begin
24 count := 0; in := 0; out := 0;
25 end.

Comments

lines 2-4 Here, slots is the actual buffer, count the number of items in the buffer, and in and out the
indices of the next element of slots where a deposit is to be made or from which an extraction is
to be made. There are two conditions we care about: if the buffer is not full (represented by the
condition variable notfull), and if the buffer is not empty (represented by the condition variable
notempty).

line 5 The keyword entry means that this procedure may be called from outside the monitor. It is called
by placing the name of the monitor first, then a period, then the function name; so,
buffer.deposit(…).

lines 7-8 This code checks to see if there is room in the buffer for a new item. If not, the process blocks on
the condition notfull; when some other process does extract an element from the buffer, then
there will be room and that process will signal on the condition notfull, allowing the blocked
one to proceed. Note that while blocked on this condition, other processes may access procedures
within the monitor.

lines 9-11 This code actually deposits the item into the buffer. Note that the monitor guarantees mutual exclu-
sion.

line 12 Just as a producer will block on a full buffer, a consumer will block on an empty one. This indi-
cates to any such consumer process that the buffer is no longer empty, and unblocks exactly one of

Producer Consumer Problem ECS 251 – Winter 2001 Page 14

Last modified at 11:32 pm on Sunday, January 7, 2001

them. If there are no blocked consumers, this is effectively a no-op.

line 14 As with the previous procedure, this is called from outside the monitor by
buffer.extract(…).

lines 16-17 This code checks to see if there is any unconsumed item in the buffer. If not, the process blocks on
the condition notempty; when some other process does deposit an element in the buffer, then
there will be something for the consumer to extract and that producer process will signal on the
condition notempty, allowing the blocked one to proceed. Note that while blocked on this condi-
tion, other processes may access procedures within the monitor.

lines 18-20 This code actually extracts the item from the buffer. Note that the monitor guarantees mutual
exclusion.

line 21 Just as a consumer will block on an empty buffer, a producer will block on a full one. This indi-
cates to any such producer process that the buffer is no longer full, and unblocks exactly one of
them. If there are no blocked producers, this is effectively a no-op.

lines 23-25 This is the initialization part.

First Readers Writers Problem ECS 251 – Winter 2001 Page 15

Last modified at 11:32 pm on Sunday, January 7, 2001

First Readers Writers Problem

Introduction

This algorithm uses a monitor to solve the first readers-writers problem.

Algorithm

1 readerwriter: monitor
2 var readcount: integer;
3 writing: boolean;
4 oktoread, oktowrite: condition;
5 procedure entry beginread;
6 begin
7 readcount := readcount + 1;
8 if writing then
9 oktoread.wait;
10 end;
11 procedure entry endread;
12 begin
13 readcount := readcount - 1;
14 if readcount = 0 then
15 oktowrite.signal;
16 end;
17 procedure entry beginwrite;
18 begin
19 if readcount > 0 or writing then
20 oktowrite.wait;
21 writing := true;
22 end;
23 procedure entry endwrite;
24 var i: integer;
25 begin
26 writing := false;
27 if readcount > 0 then
28 for i := 1 to readcount
29 oktoread.signal;
30 else
31 oktowrite.signal;
32 end;
33 begin
34 readcount := 0; writing := false;
35 end.

Comments

lines 1-4 Here, readcount contains the number of processes reading the file, and writing is true when a
writer is writing to the file. Oktoread and oktowrite correspond to the logical conditions of
being able to access the file for reading and writing, respectively.

lines 7-9 In this routine, the reader announces that it is ready to read (by adding 1 to readcount). If a
writer is accessing the file, it blocks on the condition variable oktoread; when done, the writer
will signal on that condition variable, and the reader can proceed.

lines 13-15 In this routine, the reader announces that it is done (by subtracting 1 from readcount). If no

First Readers Writers Problem ECS 251 – Winter 2001 Page 16

Last modified at 11:32 pm on Sunday, January 7, 2001

more readers are reading, it indicates a writer may go ahead by signalling on the condition variable
oktowrite.

lines 19-21 In this routine, the writer first sees if any readers or writers are accessing the file; if so, it waits until
they are done. Then it indicates that it is writing to the file by setting the boolean writing to
true.

lines 26-31 Here, the writer first announces it is done by setting writing to false. Since readers have pri-
ority, it then checks to see if any readers are waiting; if so, it signals all of them (as many readers
can access the file simultaneously). If not, it signals any writers waiting.

line 34 This initializes the variables.

Monitors and Semaphores ECS 251 – Winter 2001 Page 17

Last modified at 11:32 pm on Sunday, January 7, 2001

Monitors and Semaphores

Introduction

This handout describes how to express monitors in terms of semaphores. If an operating system provided semaphores
as primitives, this is what a compiler would produce when presented with a monitor.

Algorithm

1 var mutex, urgent, xcond: semaphore;
2 urgentcount, xcondcount: integer;

The body of each procedure in the monitor is set up like this:
3 P(xmutex);
4 (* procedure body*)
5 if urgentcount > 0 then
6 V(urgent)
7 else
8 V(mutex);

Each x.wait within the procedure is replaced by:
9 xcondcount := xcondcount + 1;
10 if urgentcount > 0 then
11 V(urgent)
12 else
13 V(mutex);
14 P(xcond);
15 xcondcount := xcondcount - 1;

Each x.signal within the procedure is replaced by:
16 urgentcount := urgentcount + 1;
17 if xcondcount > 0 then begin
18 V(xcond);
19 P(urgent);
20 end;
21 urgentcount := urgentcount - 1;

Comments

line 1 The semaphore mutex is initialized to 1 and ensures that only one process at a time is executing
within the monitor. The semaphore urgent is used to enforce the requirement that processes that
signal (and as a result are suspended) are to be restarted before any new process enters the mon-
itor. The semaphore xcond will be used to block processes doing waits on the condition variable
x. Note that if there is more than one such condition variable, a corresponding semaphore for each
condition variable must be generated. Both urgent and xcond are initialized to 0.

line 2 The integer urgentcount indicates how many processes are suspended as a result of a signal
operation (and are therefore waiting on the semaphore urgent); the counter xcondcount is
associated with the condition variable x, and indicates how many processes are suspended on that
condition (i.e., suspended on the semaphore xcond).

lines 3-8 Since only one process at a time may be in the monitor, the process entering the monitor procedure
must wait until no other process is using it (P(mutex)). On exit, the process signals others that
they may attempt entry, using the following order: if any other process has issues a signal and been
suspended (i.e., urgentcount ≠ 0), the exiting process indicates that one of those is to be contin-
ued (V(urgent)). Otherwise, one of the processes trying to enter the monitor may do so
(V(mutex)).

lines 9-15 First, the process indicates it will be executing an x.wait by adding 1 to xcondcount. It then

Monitors and Semaphores ECS 251 – Winter 2001 Page 18

Last modified at 11:32 pm on Sunday, January 7, 2001

signals some other process that that process may proceed (using the same priority as above). It sus-
pends on the semaphore xcond. When restarted, it indicates it is done with the x.wait by sub-
tracting 1 from xcondcount, and proceeds. Note that the P(xcond) will always suspend the
process since, unlike semaphores, if no process is suspended on x.wait, then x.signal is
ignored. So when this is executed, the value of the semaphore xcond is always 0.

lines 16-21 First, the process indicates it will be executing an x.signal by adding 1 to urgentcount. It
then checks if any process is waiting on condition variable x (xcondcount > 0), and if so signals
any such process (V(xcondsem)) before suspending itself (P(urgent)). When restarted, the
process indicates it is no longer suspended (by subtracting 1 from urgentcount).

Monitors and Priority Waits ECS 251 – Winter 2001 Page 19

Last modified at 11:32 pm on Sunday, January 7, 2001

Monitors and Priority Waits

Introduction

This is an example of a monitor using priority waits. It implements a simple alarm clock; that is, a process calls
alarmclock.wakeme(n), and suspends for n seconds. Note that we are assuming the hardware invokes the pro-
cedure tick to update the clock every second.

Algorithm

1 alarmclock: monitor;
2 var now: integer;
3 wakeup: condition;
4 procedure entry wakeme(n: integer);
5 begin
6 alarmsetting := now + n;
7 while now < alarmsetting do
8 wakeup.wait(alarmsetting);
9 wakeup.signal;
10 end;
11 procedure entry tick;
12 begin
13 now := now + 1;
14 wakeup.signal;
15 end.

Comments

lines 2-3 Here, now is the current time (in seconds) and is updated once a second by the procedure tick.
When a process suspends, it will do a wait on the condition wakeup.

line 6 This computes the time at which the process is to be awakened.

lines 7-8 The process now checks that it is to be awakened later, and then suspends itself.

line 9 Once a process has been woken up, it signals the process that is to resume next. That process
checks to see if it is time to wake up; if not, it suspends again (hence the while loop above, rather
than an if statement). If it is to wake up, it signals the next process…

line 14 This is done once a second (hence the addition of 1 to now). The processes to be woken up are
queued in order of remaining time to wait with the next one to wake up first. So, when tick sig-
nals, the next one to wake up determines if it is in fact time to wake up. If not, it suspends itself; if
so, it proceeds.

First Readers Writers Problem ECS 251 – Winter 2001 Page 20

Last modified at 11:32 pm on Sunday, January 7, 2001

First Readers Writers Problem

Introduction

This uses crowd monitors to solve the first readers/writers problem.

Algorithm

1 readerwriter: crowd monitor
2 var Readers: crowd read;
3 Writers: crowd read, write;
4 readcount: integer;
5 writing: boolean;
6 oktoread, oktowrite: condition;
7 guard procedure entry beginread;
8 begin
9 readcount := readcount + 1;
10 if writing then
11 oktoread.wait;
12 enter Readers;
13 end;
14 guard procedure entry endread;
15 begin
16 leave Readers;
17 readcount := readcount - 1;
18 if readcount = 0 then
19 oktowrite.signal;
20 end;
21 guard procedure entry beginwrite;
22 begin
23 if readcount > 0 or writing then
24 oktowrite.wait;
25 writing := true;
26 enter Writers;
27 end;
28 guard procedure entry endwrite;
29 var i: integer;
30 begin
31 leave Writers;
32 writing := false;
33 if readcount > 0 then
34 for i := 1 to readcount
35 oktoread.signal;
36 else
37 oktowrite.signal;
38 end;
39 procedure entry read;
40 … read from shared data …
41 end;
42 procedure entry write;
43 … write to shared data …
44 end;
45 begin
46 readcount := 0; writing := false;

First Readers Writers Problem ECS 251 – Winter 2001 Page 21

Last modified at 11:32 pm on Sunday, January 7, 2001

47 end.

Comments

lines 2-3 These lines define which procedures can be called by members of the crowd; here, members of the
Readers crowd can call read, and members of the Writers crowd can call either read or write. Only
processes in those crowds can call read or write; should any other process do so, it will cause a run-
time error.

line 7 The keyword guard means this procedure is mutually exclusive (so only one process at a time may
be in the guarded procedures). Note this relaxes the definition of Hoare’s monitor, in that multiple
proceses may now access the monitor simultaneously.

line 12 This puts the calling process into the Readers crowd; it may now call the procedure read.

line 16 This removes the calling process from the Readers crowd, so it may not call read until after it calls
beginread and executes line 12 again.

line 26 This puts the calling process into the Writers crowd; it may now call the procedures read and write.

line 31 This removes the calling process from the Readers crowd, so it may not call read or write until after
it calls beginread or beginwrite and executes lines 12 or 26 again.

line 39 Now any number of processes may access the read procedure simultaneously.

line 42 Although it may appear that any number of processes may access the write procedure simulta-
neously, note that all callers must first have invoked beginwrite — and only one such process will
be active at a time. So at most one process will call write.

Producer Consumer Problem ECS 251 – Winter 2001 Page 22

Last modified at 11:32 pm on Sunday, January 7, 2001

Producer Consumer Problem

Introduction

This uses invariant expressions to solve the producer consumer problem.

Algorithm

1 buffer: invariant module;
2 const n = 1024;
3 var slots: array [0..n-1] of item;
4 in, out: 0..n-1;
5 invariant deposit
6 StartCount(deposit) - FinishCount(extract) < n;
7 CurrentCount(deposit) = 0;
8 invariant extract
9 StartCount(extract) - FinishCount(deposit) < 0
10 CurrentCount(extract) = 0;
11 procedure entry deposit(data: item);
12 begin
13 slots[in] := data;
14 in := in + 1 mod n;
15 end;
16 procedure entry extract(var data: item);
17 begin
18 data := slots[out];
19 out := out + 1 mod n;
20 end;
21 begin
22 in := 0; out := 0;
23 end.

Comments

lines 3-4 Here, slots is the actual buffer and in and out the indices of the next element of slots where a deposit
is to be made or from which an extraction is to be made.

line 5 The next constraints apply to the procedure deposit.

line 6 This invariant checks that there is at least one slot in the buffer that is empty. If false, then deposit
must have been started at least n times more than extract finished.

line 7 This ensures at most one process can be in deposit at a time (mutual exclusion).

line 8 The next constraints apply to the procedure extract.

line 6 This invariant checks that there is at least one slot in the buffer that is full. If so, then deposit fin-
ished more times than extract started.

line 7 This ensures at most one process can be in extract at a time (mutual exclusion).

line 11 As with the previous procedure, this is called from outside the monitor by buffer.extract(…).

lines 12-15 This code actually extracts the item from the buffer. Note that the invariant guarantees mutual
exclusion.

lines 23-25 This is the initialization part.

First Readers Writers Problem ECS 251 – Winter 2001 Page 23

Last modified at 11:32 pm on Sunday, January 7, 2001

First Readers Writers Problem

Introduction

This uses invariant expressions to solve the first readers writers problem.

Algorithm

1 readerwriter: invariant module
2 invariant read
3 CurrentCount(write) = 0;
4 invariant write
5 CurrentCount(write) + CurrentCount(read) = 0;
6 procedure entry read;
7 … read from shared data …
8 end;
9 procedure entry write;
10 … write to shared data …
11 end;
12 begin
13 end.

Comments

lines 2-3 This states the condition that must hold whenever the procedure read is executed; it requires that no
processes be executing write. Note this means readers will have priority over writers when a reader
is presently reading; it says nothing about what happens if a reader and a writer call the module at
the same time.

lines 4-5 This states the condition that must hold whenever the procedure write is executed; it requires that
no processes be executing either read or write.

lines 6-11 Here, the routines simply do the reading and writing.

lines 12-13 The initialization part of the module; as there are no variables in it, this part is empty.

Producer Consumer Process ECS 251 – Winter 2001 Page 24

Last modified at 11:32 pm on Sunday, January 7, 2001

Producer Consumer Process

Introduction

This uses Hoare’s CSP language to solve the producer consumer problem.

Algorithm

This process manages the buffer; call it boundedbuffer.
1 buffer: (0..9) item;
2 in, out: integer;
3 in := 0;
4 out := 0;
5 *[in < out + n; producer ? buffer(in mod n)
6 � in := in + 1
7 → out < in; consumer ? more()
8 � consumer ! buffer(out mod n);
9 out := out + 1
10]

Comments

lines 1-2: Here, buffer is the buffer, in the number of items put into the buffer, and out the number of items
extracted. The producer process outputs an item nextp to this process by:

bounded-buffer ! nextp;

and the consumer process outputs an item nextc to this process by:

bounded-buffer ! more(); bounded-buffer ? nextc;

(more() is there because CSP does not allow output commands in guards.)

lines 3-4: These just initialize in and out.

lines 5-6: If there is room for another item in the buffer (in < out + n), wait for the producer to produce some-
thing and deposit it in an empty buffer slot (producer ? buffer(in mod n)) and indicate that slot is
now used (in := in + 1).

lines 7-9: If the buffer is full (out < in), wait until the consumer asks for something (consumer ? more()), then
output the next element of the buffer (consumer ! buffer(out mod n)), and indicate it has been
extracted (out := out + 1).

Producer Consumer Problem ECS 251 – Winter 2001 Page 25

Last modified at 11:32 pm on Sunday, January 7, 2001

Producer Consumer Problem

Introduction

This algorithm uses ADA to solve the producer/consumer (or bounded-buffer) problem.

Algorithm

This process (task, to ADA) manages the buffer.
1 task boundedbuffer is
2 entry deposit(data: in item);
3 entry extract(data: out item);
4 end;
5 task body boundedbuffer is
6 buffer: array[0..n-1] of item;
7 count: integer range 0..n := 0;
8 in, out: integer range 0..n-1 := 0;
9 begin
10 loop
11 select
12 when count < n =>
13 accept deposit(data: in item) do
14 buffer[in] := data;
15 end;
16 in := (in + 1) mod n;
17 count := count + 1;
18 or when count > 0 =>
19 accept extract(data: out item) do
20 data := buffer[out];
21 end;
22 out := (out + 1) mod n;
23 count := count - 1;
24 end select;
25 end loop;
26 end.

The producer deposits an item into the buffer with
27 boundedbuffer.deposit(nextp);

and the consumer extracts an item from the buffer with
28 boundedbuffer.extract(nextc);

Comments

lines 1-4 This indicates that the procedures deposit and extract may be called outside the task, and
that extract will return something in its parameter list (the out).

lines 6-8 As usual, buffer is the buffer, and count the number of items currently in the buffer; in and
out are the indices indicating where deposits go or where extractions come from.

lines 13-17 If there is room in the buffer (when count < n) this process will accept a request to deposit an
item in it (accept deposit …); it then updates its variables.

lines 18-23 If there is an item in the buffer (when count > 0) this process will accept a request to extract an
item from the buffer (accept extract …); the item is returned via the parameter list. This pro-
cedure then updates its variables.

line 24 If both of the above two when conditions are true, and both a producer and consumer has invoked a
procedure named by an accept statement (called “an open accept statement”), the system will

Producer Consumer Problem ECS 251 – Winter 2001 Page 26

Last modified at 11:32 pm on Sunday, January 7, 2001

select one to be executed in some fair manner (such as first-come-first-serve). If only one of the
conditions is true, and the procedure named in an accept statement in the body of the when state-
ment is open, that one will be executed. If both of the when conditions are false, an error condition
occurs (this usually terminates the process.)

ECS 251 – Winter 2001 Page 27

Last modified at 11:32 pm on Sunday, January 7, 2001

