Outline for January 11, 2001

1. Greetings and felicitations!
 a. First part of project due Friday
 b. Web page up and running!

2. Process models
 a. Theorem: If a system is mutually noninterfering, it is determinate.
 b. Theorem: Let f_p be an interpretation of process p. Let \prod be a system of processes, with $p \in \prod$. If for all such p, $\text{domain}(p) \neq \emptyset$ and $\text{range}(p) \neq \emptyset$, but f_p unspecified, is determinate for all f_p, then all processes in \prod are mutually noninterfering.
 c. Maximally parallel system: determinate system for which the removal of any pair from the relation \rightarrow makes the two processes in the pair interfering processes.

3. Critical section problem
 a. Mutual exclusion
 b. Progress
 c. Bounded wait

4. Classical problems
 a. Producer/consumer
 b. Readers/writers (first: readers priority; second: writers priority)
 c. Dining philosophers

5. Basic language constructs
 a. Semaphores
 b. Send/receive

6. Evaluating higher-level language constructs
 a. Modularity
 b. Constraints
 c. Expressive power
 d. Ease of use
 e. Portability
 f. Relationship with program structure
 g. Process failures, unanticipated faults (exception handling)
 h. Real-time systems

7. Higher-level language constructs
 a. Monitors
 b. Crowd monitors
 c. Invariant expressions
 d. CSP
 e. RPC
 f. ADA™
Mutual Non-Interference and Determinism

Introduction

A determinate system of processes is a set of process that always produces the same output given the same input. A mutually non-interfering set of processes is a set of processes that do not interfere with the input or output of one another. The question is, to what degree are these the same concepts?

Formal Definitions and Notations

- A system of processes \(S = (\Pi, \to) \) is a set of processes \(\Pi = \{ p_1, \ldots, p_n \} \) and a precedence relation \(\to : \Pi \times \Pi \). The \(\to \) relation is a partial ordering (we define \(p \to p \) as true). When \(p \to q \), process \(p \) must complete before process \(q \) may begin.
- Each process \(p \in \Pi \) has an associated set of input memory locations called \(\text{domain}(p) \) and an associated set of output memory locations \(\text{range}(p) \neq \emptyset \). An interpretation \(f_p \) of \(p \) associates values with each set of memory locations. The set of all inputs to \(S \) is abbreviated \(\text{domain}(S) \), and the set of all outputs from \(S \) is abbreviated \(\text{range}(S) \).
- Two systems of processes \(S = (\Pi, \to) \) and \(S' = (\Pi', \to') \) are equivalent if

 a. \(\Pi = \Pi' \);

 b. \(\to \neq \to' \); and

 c. if \(S \) and \(S' \) are given the same element of \(\text{domain}(S) \), then they output the same element of \(\text{range}(S) \).
- An execution sequence \(\alpha \) is any string of process initiation and termination events satisfying the precedence constraints of the system.
- \(V(M_i, \alpha) \) is the sequence of values written into memory location \(M_i \) at the termination of processes in \(\alpha \). The final value stored in \(M_i \) after execution sequence \(\alpha \) completes is represented by \(F(M_i, \alpha) \).
- A determinate system of processes is a system of processes \(S \) for which each element of \(\text{domain}(S) \) produces the same set \(\text{range}(S) \) regardless of the order or overlapping of the elements of \(S \). More formally, a system \(S \) is determinate if, for any initial state and for all execution sequences \(\alpha \) and \(\alpha' \) of \(S \), \(V(M_i, \alpha) = V(M_i, \alpha') \)
- A mutually noninterfering system of processes is a system of processes \(S \) in which all pairs of processes meet the Bernstein conditions. Processes \(p \) and \(q \) are noninterfering if either process is a predecessor of the other, or the processes satisfy the Bernstein conditions.
- The initiation of a process \(p \) is written \(\overline{p} \), and the termination of \(p \) is written \(p \).

Relationship of Determinate Systems and Mutually Noninterfering Systems

Theorem 1: If a system is mutually non-interfering, it is determinate.

Theorem 2: Let \(S \) be a system with \(\text{domain}(p) \) and \(\text{range}(p) \) specified, \(\text{range}(p) \neq \emptyset \), for all \(p \in \Pi \), and \(f_p \) unspecified. Then if \(S \) is determinate for all \(f_p \), it is mutually non-interfering.

Proofs

The following lemma is helpful:

Lemma: Let \(S \) be a mutually noninterfering system. Let \(p \) be a terminal process of \(S \). If \(\alpha = \beta p \gamma \delta \) is an execution sequence of \(S \), then \(\alpha' = \beta' \gamma' \delta \) is an execution sequence of \(S \) for which \(V(M_i, \alpha) = V(M_i, \alpha') \) for all \(i \).

Proof: As \(p \) is a terminal process in \(S \), it has no successors in \(S \). Hence \(\alpha' \) satisfies the precedence constraints of \(S \). So \(\alpha' \) is an execution sequence. We now consider two cases.

1. \(M_i \notin \text{range}(p) \). Note \(p \) does not write memory locations not in \(\text{range}(p) \). Consider any process \(p' \) with \(\overline{p'} \) in \(\delta \). As \(p \) and \(p' \) are mutually noninterfering, \(\text{range}(p) \cap \text{domain}(p') = \emptyset \). So all such \(p' \) find the same values in \(\text{domain}(p') \) whether the execution sequence is \(\alpha \) or \(\alpha' \). Thus, \(V(M_i, \alpha) = V(M_i, \alpha') \).

2. \(M_i \in \text{range}(p) \). Let \(\overline{p'} \) in \(\gamma \delta \). As \(p \) and \(p' \) are mutually noninterfering, \(\text{domain}(p) \cap \text{range}(p') = \emptyset \). So no \(p' \) in \(\gamma \delta \) writes into an element of \(\text{domain}(p) \). Hence for all \(M_j \in \text{domain}(p) \), \(V(M_j, \beta) = V(M_j, \beta' \gamma \delta) \). By definition, for all \(M_j \in \text{domain}(p) \), \(F(M_j, \beta) = F(M_j, \beta' \gamma \delta) \). As \(p \) has the same input for both \(\alpha \) and \(\alpha' \), it writes the same value into
each $M_i \in \text{range}(p)$ in α and α'. Let v denote the value that p writes into M_i in α. Then
\[
V(M_i, \alpha) = V(M_i, \overline{p_{\gamma}(\delta)}) \quad \text{as no process } p' \text{ in } \delta \text{ writes into an element of } \text{range}(p)
= (V(M_i, \overline{p_{\gamma}}), v) \quad \text{as } p \text{ writes } v \text{ into } M_i
= (V(M_i, \overline{p}), v) \quad \text{as no process } p' \text{ in } \gamma \text{ writes into an element of } \text{range}(p)
= (V(M_i, b\overline{\delta}), v) \quad \text{as no process } p' \text{ in } \gamma \text{ writes into an element of } \text{range}(p)
= (V(M_i, \overline{p_{\gamma}p}), v) \quad \text{as } p \text{ writes } v \text{ into } M_i
= V(M_i, \alpha')
\]
This proves the lemma.

Proof of Theorem 1: We proceed by induction on the number k of processes in a system.

Basis: $k = 1$. The claim is trivially true.

Hypothesis: For $k = 1, \ldots, n-1$, if a system of k processes is mutually noninterfering, it is determinate.

Step: Let S be an n process system of mutually noninterfering processes.

If S has exactly one execution sequence, it is determinate. So, assume that S has two distinct execution sequences α and β.

Let p be a terminal process of S, and form α' and β' according to the lemma. Then
\[
\alpha' = \alpha'_{\overline{p}} \quad V(M_i, \alpha) = V(M_i, \alpha') \quad \text{for all } i \text{ such that } 1 \leq i \leq m
\]
\[
\beta' = \beta'_{\overline{p}} \quad V(M_i, \beta) = V(M_i, \beta') \quad \text{for all } i \text{ such that } 1 \leq i \leq m
\]
Now form the $n-1$ process system $S' = (\prod - \{ p \}, \rightarrow)$, where \rightarrow is formed by deleting from \rightarrow all pairs with p in them. Clearly, α'' and β'' are execution sequences of S'. Further, by the induction hypothesis, $V(M_i, \alpha'') = V(M_i, \beta'')$ for all i such that $1 \leq i \leq m$. This means that the values in the elements of $\text{domain}(p)$ are the same in both α'' and β''; in other words, $F(M_j, \alpha'') = F(M_j, \beta'')$ for all $M_j \in \text{domain}(p)$. As the inputs for p are the same in both execution sequences, the outputs will also be the same. It follows that p writes the same value v into $M_i \in \text{range}(p)$ in both α' and β'.

Hence for $M_i \not\in \text{range}(p)$:
\[
V(M_i, \alpha) = V(M_i, \alpha') \quad \text{by the lemma}
= V(M_i, \alpha'') \quad \text{as } M_i \not\in \text{range}(p)
= V(M_i, \beta'') \quad \text{by the induction hypothesis}
= V(M_i, \beta') \quad \text{as } M_i \not\in \text{range}(p)
= V(M_i, \beta) \quad \text{by the lemma}
\]
and for $M_i \in \text{range}(p)$:
\[
V(M_i, \alpha) = V(M_i, \alpha') \quad \text{by the lemma}
= (V(M_i, \alpha''), v) \quad p \text{ writes } v \text{ into } M_i
= (V(M_i, \beta''), v) \quad \text{by the induction hypothesis}
= (V(M_i, \beta'), v) \quad p \text{ writes } v \text{ into } M_i
= V(M_i, \beta) \quad \text{by the lemma}
\]
Either way, $V(M_i, \alpha) = V(M_i, \beta)$. Hence S is determinate, completing the induction step and the proof.

Proof of Theorem 2: We prove this theorem by contradiction. Let S be a determinate system. Let $p, p' \in \prod$ be interfering processes. Then there exist execution sequences
\[
\alpha = \overline{p_{p_{\gamma}}p_{\gamma}p}
\alpha' = \overline{p_{p_{\gamma}}p_{\gamma}p}
\]
Consider the Bernstein conditions. As p and p' are interfering, at least one of those conditions does not hold. We examine them separately.

1. Let $M_i \in \text{range}(p) \cap \text{range}(p')$. We choose the interpretation f_p so that p writes the value u into M_i, and we choose the interpretation $f_{p'}$ so that p' writes the value v into M_i and $u \neq v$. But then
\[
V(M_i, \overline{p_{\gamma}p_{\gamma}p}) = (V(M_i, \overline{p}), u, v)
\]
and
\[
V(M_i, \overline{p_{\gamma}p_{\gamma}p}) = (V(M_i, \overline{p}), v, u).
\]
This means S is not determinate, contradicting hypothesis. So $\text{range}(p) \cap \text{range}(p') = \emptyset$.

2. Let $M_i \in \text{domain}(p) \cap \text{range}(p')$. As $\text{range}(p) \neq \emptyset$, take $M_i \in \text{range}(p)$. Choose the interpretation f_p, so that p
reads different values in α and α'; that is, $F(M_j, \beta) \neq F(M_j, \beta \overrightarrow{p} p')$ for some j such that $1 \leq j \leq m$. Also, choose f_p so that p writes u in α and v in α', where $u \neq v$. But then

$V(M_i, \beta \overrightarrow{p} p') = V(M_i, \beta \overrightarrow{p} p)$

as $\text{range}(p) \cap \text{range}(p') = \emptyset$

$V(M_i, \beta \overrightarrow{p} p) = (V(M_i, \beta), u)$

As $u \neq v$, this means that S is not determinate, contradicting hypothesis. So $\text{domain}(p) \cap \text{range}(p') = \emptyset$. [As an aside, if $\text{range}(p) = \emptyset$, then $M_j \notin \text{range}(p)$ and p and p' are noninterfering. Hence there is no contradiction.]

3. By symmetry, the argument for case 2 also shows that $\text{range}(p) \cap \text{domain}(p') = \emptyset$.

In all three cases, the Bernstein conditions must hold. This completes the proof.

\square