Outline for January 16, 2001

1. Greetings and felicitations!
 a. All projects turned in are on the web page; you should have received approval or disapproval by now

2. Higher-level language constructs
 a. Monitors
 b. Crowd monitors
 c. Invariant expressions
 d. CSP
 e. RPC
 f. ADA™

3. Deadlock
 a. Serially reusable resources vs. consumable resources
 b. What is deadlock?
 c. Approaches to solving it: ignore, detect and recover, prevent, avoid

4. System model
 a. Process maps one state into a set of states (each a potential ending state)
 b. Define blocked, deadlocked process; deadlocked, safe states
 c. Resource graphs; request, assignment edges; operations are requesting, acquiring, releasing
 d. Review terms: bipartite, sink, isolated nodes, path, cycle, reachable set, knot

5. Deadlock Detection
 a. Graph analysis of system: assume serially reusable resources (SRR)
 b. Reduction of SRR graphs
 c. Lemma: All reduction sequences of a given SRR graph lead to the same irreducible graph
 d. Deadlock Theorem: S is a deadlock state if and only if the reusable resource graph of S is not completely reducible.
 e. Cycle Theorem: A cycle in a reusable resource graph is a necessary condition for deadlock.
 f. Continuous deadlock detection
 g. Expediency and deadlocks
 h. Single-unit resources and deadlocks

6. Deadlock Recovery
 a. Process termination: kill one with lowest cost first
 b. Termination in expedient states, single unit requests: terminate one process per knot, minimum cost to restart
 c. Process pre-emption

7. Deadlock Prevention
 a. Requirements for deadlock: mutual exclusion, hold and wait, no pre-emption, circular wait
 b. Collective request policy
 c. Pre-emption
 d. Ordered request policy

8. Deadlock Avoidance
 a. Prevent system from ever entering an unsafe state
 b. Maximum claim graph
 c. Example: Banker’s algorithm