Outline for April 20, 2000

1. Greetings and felicitations!
 a. Office hours this week after today: W4-5, Th2-3

2. Chinese Wall Policy
 a. Arises as legal defense to insider trading on London stock exchange
 b. Low-level entities are objects; all objects concerning the same corporation form a CD (company dataset);
 CDs whose corporations are in competition are grouped into COIs (Conflict of Interest classes)
 c. Intuitive goal: keep one subject from reading different CDs in the same COI, or reading one CD and writing
to another in same COI
 d. Simple Security Property: Read access granted if the object (a) is in the same CD as an object already
 accessed by the subject, or (b) is in a CD in an entirely different COI. Assumes correct initialization
 e. Theorems: (1) Once a subject has accessed an object, only other objects in that CD are available within that
 COI; (2) subject has access to at most 1 dataset in each COI class
 f. Exceptions: sanitized information
 g. * Property: Write access is permitted only if (a) read access is permitted by the simple security property;
 and (b) no object in a different CD in that COI can be read, unless it contains sanitized information
 h. Comparison to BLP: (1) ability to track history; (2) in CW, subjects choose which objects they can access
 but not in BLP; (3) CW requires both mandatory and discretionary parts, BLP is mandatory only.

3. ORCON
 a. Originator controls distribution
 b. DAC, MAC inadequate
 c. Solution is combination

4. Role-based Access Control (RBAC)
 a. Definition of role
 b. Partitioning as job function
 c. Discuss Data General model

5. Secure vs. Precise
 a. Confidentiality only
 b. Assume: output of a function encodes all available information about inputs (such as resource usage, etc.)
 c. Protection mechanism: given function p, it’s a function m such that either $m = p$ for a given set of inputs, or
 m produces an error message
 d. Confidentiality policy: function which checks that the particular inputs are in the authorized set of inputs
 e. Security: m is secure iff there is an m' such that, for all inputs, $m = m'(c(...)$, i.e., m's values consistent with
 stated confidentiality policy
 f. Precision: m_1, m_2 distinct protection mechanisms. m_1 as precise as m_2 if, for all inputs, $m_1 = p$ implies $m_2 = p$.
 m_1 is more precise if there is an input such that $m_1 = p$ and $m_2 \neq p$ on that input.
 g. Union: $m_1 \cup m_2 = m_3$, where $m_3 = p$ iff $m_1 = p$ and $m_2 = p$; otherwise, $m_3 = m_1$.
 h. ICBS: Let m_1, m_2 be secure protection mechanisms for a program p and policy c. Then $m_1 \cup m_2$ is also a
 secure protection mechanism for p and c. Further, $m_1 \cup m_2$ is more precise than either m_1 or m_2.
 i. Generalizing: for any program p and security policy c, there exists a precise, secure mechanism m^* such
 that, for all secure mechanisms m associated with p and c, m^* is more precise than m.
 j. BUT: there is no effective procedure that determines a maximally precise, secure mechanism for a policy
 and program.