Outline for April 5, 2006

Reading: text, §3.1—3.3.2

1. Greetings and felicitations!
2. What is the safety question?
 a. An unauthorized state is one in which a generic right \(r \) could be leaked into an entry in the ACM that did not previously contain \(r \). An initial state is safe for \(r \) if it cannot lead to a state in which \(r \) could be leaked.
 b. Question: in a given arbitrary protection system, is safety decidable?
 c. Theorem: there is an algorithm that decides whether a given mono-operational system and initial state is safe for a given generic right.
3. General case: It is undecidable whether a given state of a given protection system is safe for a given generic right.
 a. Represent TM as ACM
 b. Reduce halting problem to it
4. Take-Grant
 a. Counterpoint to HRU result
 b. Symmetry of take and grant rights
 c. Islands (maximal subject-only \(tg \)-connected subgraphs)
 d. Bridges (as a combination of terminal and initial spans)
5. Sharing
 a. Definition: \(\text{can\textasciitilde}share(r, x, y, G_0) \) true iff there exists a sequence of protection graphs \(G_0, ..., G_n \) such that \(G_0 \vdash^* G_n \) using only take, grant, create, remove rules and in \(G_n \), there is an edge from \(x \) to \(y \) labeled \(r \)
 b. Theorem: \(\text{can\textasciitilde}share(r, x, y, G_0) \) iff there is an edge from \(x \) to \(y \) labelled \(r \) in \(G_0 \), or all of the following hold:
 i. there is a vertex \(y' \) with an edge from \(y' \) to \(y \) labeled \(r \);
 ii. there is a subject \(y'' \) which terminally spans to \(y' \), or \(y'' = y' \);
 iii. there is a subject \(x' \) which initially spans to \(x \), or \(x' = x \); and
 iv. there is a sequence of islands \(I_1, ..., I_n \) connected by bridges for which \(x' \) is in \(I_1 \) and \(y' \) is in \(I_n \).
6. Model Interpretation
 a. ACM very general, broadly applicable; Take-Grant more specific, can model fewer situations
 b. Theorem: \(G_0 \) protection graph with exactly one subject, no edges; \(R \) set of rights. Then \(G_0 \vdash^* G \) iff \(G \) is a finite directed graph containing subjects and objects only, with edges labeled from nonempty subsets of \(R \), and with at least one subject with no incoming edges
 c. Example: shared buffer managed by trusted third party